• Title/Summary/Keyword: Reliability Sensitivity

Search Result 720, Processing Time 0.023 seconds

Development for Improvement Methodology of Radiation Shielding Evaluation Efficiency about PWR SNF Interim Storage Facility (PWR 사용후핵연료 중간저장시설의 몬테칼로 차폐해석 방법에 대한 계산효율성 개선방안 연구)

  • Kim, Taeman;Seo, Myungwhan;Cho, Chunhyung;Cha, Gilyong;Kim, Soonyoung
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.92-100
    • /
    • 2015
  • For the purpose of improving the efficiency of the radiation impact assessment of dry interim storage facilities for the spent nuclear fuel of pressurized water reactors (PWRs), radiation impact assessment was performed after the application of sensitivity assessment according to the radiation source term designation method, development of a 2-step calculation technique, and cooling time credit. The present study successively designated radiation source terms in accordance with the cask arrangement order in the shielding building, assessed sensitivity, which affects direct dose, and confirmed that the radiation dosage of the external walls of the shielding building was dominantly affected by the two columns closest to the internal walls. In addition, in the case in which shielding buildings were introduced into storage facilities, the present study established and assessed the 2-step calculation technique, which can reduce the immense computational analysis time. Consequently, results similar to those from existing calculations were derived in approximately half the analysis time. Finally, when radiation source terms were established by adding the storage period of the storage casks successively stored in the storage facilities and the cooling period of the spent nuclear fuel, the radiation dose of the external walls of the buildings was confirmed to be approximately 40% lower than the calculated values; the cooling period was established as being identical. The present study was conducted to improve the efficiency of the Monte Carlo shielding analysis method for radiation impact assessment of interim storage facilities. If reliability is improved through the assessment of more diverse cases, the results of the present study can be used for the design of storage facilities and the establishment of site boundary standards.

Diagnostic Efficacy and Complications by Transthoracic Fine Needle Aspiration Biopsy of Localized Lung Lesions (국소성 폐결절에 대한 경피적 세침 흡인술의 진단적 유용성 및 합병증)

  • Seong, Nak-Cheon;Kim, Ki-Joong;Yoon, Ki-Heon;Yoo, Jee-Hong;Kang, Hong-Mo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.3
    • /
    • pp.339-347
    • /
    • 1996
  • Background : Transthoracic fine needle aspiration and biopsy(TNAB) has become a frequently used technique in the investigation of the intrathoracic lesions because of its safety, reliability, and accuracy. Method : Data on 125 patients who underwent TNAB from 1990 through 1994 were studied to determine the diagnostic sensitivity, accuracy and complications of this procedure as related to lesion type and location. Results : 1. The over-all diagnostic sensitivity of TNAB was 61.6%(77 of 125 patients). 2. The diagnostic yields were as high as 89.9% for malignant lesions, but a specific diagnosis of benign lesions were obtained only in 30% of benign lung lesions. 3. The correlation between results of TNAB cytology and of final histology was as high as 88.2%. 4. Lung lesions that were greater than 3cm in size had a higher proportion of correct diagnosis(73.3%) as compared with lesions 3cm or less in size(38.1%). But there was no significant difference between the central and peripheral lung lesions. 5. There were no serious complications to TNAB. In 12.8% of the procedures a pneumothorax developed, indicating a chest tube in 1.6% of the procedures. In 2 cases, minimal hemoptysis developed which did not require treatment. Conclusion : In our experience, TNAB represents a minor and safe procedure, which permits a direct approach to localized malignant lung lesions with a high degree of accuracy.

  • PDF

Simultaneous Spectrophotometric Determination of Copper, Nickel, and Zinc Using 1-(2-Thiazolylazo)-2-Naphthol in the Presence of Triton X-100 Using Chemometric Methods (화학계량학적 방법을 사용한 Triton X-100이 함유된 1-(2-Thiazolylazo)-2-Naphthol을 사용한 구리, 니켈과 아연의 동시 분광광도법적 정량)

  • Low, Kah Hin;Zain, Sharifuddin Md.;Abas, Mhd. Radzi;Misran, Misni;Mohd, Mustafa Ali
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.717-726
    • /
    • 2009
  • Multivariate models were developed for the simultaneous spectrophotometric determination of copper (II), nickel (II) and zinc (II) in water with 1-(2-thiazolylazo)-2-naphthol as chromogenic reagent in the presence of Triton X-100. To overcome the drawback of spectral interferences, principal component regression (PCR) and partial least square (PLS) multivariate calibration approaches were applied. Performances were validated with several test sets, and their results were then compared. In general, no significant difference in analytical performance between PLS and PCR models. The root mean square error of prediction (RMSEP) using three components for $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ were 0.018, 0.010, 0.011 ppm, respectively. Figures of merit such as sensitivity, analytical sensitivity, limit of detection (LOD) were also estimated. High reliability was achieved when the proposed procedure was applied to simultaneous determination of $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ in synthetic mixture and tap water.

Comparison of One-Tube Nested-PCR and PCR-Reverse Blot Hybridization Assays for Discrimination of Mycobacterium tuberculosis and Nontuberculous Mycobacterial Infection in FFPE tissues

  • Park, Sung-Bae;Park, Heechul;Bae, Jinyoung;Lee, Jiyoung;Kim, Ji-Hoi;Kang, Mi Ran;Lee, Dongsup;Park, Ji Young;Chang, Hee-Kyung;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.426-430
    • /
    • 2019
  • Currently, molecular diagnostic assays based on nucleic acid amplification tests have been shown to effectively detect mycobacterial infections in various types of specimen, however, variable sensitivity was shown in FFPE samples according to the kind of commercial kit used. The present study therefore used automated PCR-reverse blot hybridization assay (REBA) system, REBA Myco-ID HybREAD 480®, for the rapid identification of Mycobacterium species in various types of human tissue and compared the conventional one-tube nested-PCR assay for detecting Mycobacterium tuberculosis (MTB). In conventional nested-PCR tests, 25 samples (48%) were MTB positive and 27 samples (52%) were negative. In contrast, when conducted PCR-REBA assay, 11 samples (21%) were MTB positive, 20 samples (39%) were NTM positive, 8 samples (15%) were MTB-NTM double positive, and 13 samples (25%) were negative. To determine the accuracy and reliability of the two molecular diagnostic tests, the one-tube nested-PCR and PCR-REBA assays, were compared with histopathological diagnosis in discordant samples. When conducted nested-PCR assay, 10 samples (59%) were MTB positive and seven samples (41%) were negative. In contrast, when conducted PCR-REBA test, three samples (17%) were MTB positive, 10 samples (59%) were NTM positive and four samples (24%) were negative. In conclusion, the automated PCR-REBA system proved useful to identify Mycobacterium species more rapidly and with higher sensitivity and specificity than the conventional molecular assay, one-tube nested-PCR; it might therefore be the most suitable tool for identifying Mycobacterium species in various types of human tissue for precise and accurate diagnosis of mycobacterial infection.

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding (반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가)

  • Lee, Jae Hyo;Kang, Seung In;Kim, Sang Woo;Yi, Jin Woo;Seong, Dong Gi
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.39-43
    • /
    • 2020
  • Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

Applicability of QSAR Models for Acute Aquatic Toxicity under the Act on Registration, Evaluation, etc. of Chemicals in the Republic of Korea (화평법에 따른 급성 수생독성 예측을 위한 QSAR 모델의 활용 가능성 연구)

  • Kang, Dongjin;Jang, Seok-Won;Lee, Si-Won;Lee, Jae-Hyun;Lee, Sang Hee;Kim, Pilje;Chung, Hyen-Mi;Seong, Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • Background: A quantitative structure-activity relationship (QSAR) model was adopted in the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH, EU) regulations as well as the Act on Registration, Evaluation, etc. of Chemicals (AREC, Republic of Korea). It has been previously used in the registration of chemicals. Objectives: In this study, we investigated the correlation between the predicted data provided by three prediction programs using a QSAR model and actual experimental results (acute fish, daphnia magna toxicity). Through this approach, we aimed to effectively conjecture on the performance and determine the most applicable programs when designating toxic substances through the AREC. Methods: Chemicals that had been registered and evaluated in the Toxic Chemicals Control Act (TCCA, Republic of Korea) were selected for this study. Two prediction programs developed and operated by the U.S. EPA - the Ecological Structure-Activity Relationship (ECOSAR) and Toxicity Estimation Software Tool (T.E.S.T.) models - were utilized along with the TOPKAT (Toxicity Prediction by Komputer Assisted Technology) commercial program. The applicability of these three programs was evaluated according to three parameters: accuracy, sensitivity, and specificity. Results: The prediction analysis on fish and daphnia magna in the three programs showed that the TOPKAT program had better sensitivity than the others. Conclusions: Although the predictive performance of the TOPKAT program when using a single predictive program was found to perform well in toxic substance designation, using a single program involves many restrictions. It is necessary to validate the reliability of predictions by utilizing multiple methods when applying the prediction program to the regulation of chemicals.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.

Interpretation of Complete Tumor Response on MRI Following Chemoradiotherapy of Rectal Cancer: Inter-Reader Agreement and Associated Factors in Multi-Center Clinical Practice

  • Hae Young Kim;Seung Hyun Cho;Jong Keon Jang;Bohyun Kim;Chul-min Lee;Joon Seok Lim;Sung Kyoung Moon;Soon Nam Oh;Nieun Seo;Seong Ho Park
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.351-362
    • /
    • 2024
  • Objective: To measure inter-reader agreement and identify associated factors in interpreting complete response (CR) on magnetic resonance imaging (MRI) following chemoradiotherapy (CRT) for rectal cancer. Materials and Methods: This retrospective study involved 10 readers from seven hospitals with experience of 80-10210 cases, and 149 patients who underwent surgery after CRT for rectal cancer. Using MRI-based tumor regression grading (mrTRG) and methods employed in daily practice, the readers independently assessed mrTRG, CR on T2-weighted images (T2WI) denoted as mrCRT2W, and CR on all images including diffusion-weighted images (DWI) denoted as mrCRoverall. The readers described their interpretation patterns and how they utilized DWI. Inter-reader agreement was measured using multi-rater kappa, and associated factors were analyzed using multivariable regression. Correlation between sensitivity and specificity of each reader was analyzed using Spearman coefficient. Results: The mrCRT2W and mrCRoverall rates varied widely among the readers, ranging 18.8%-40.3% and 18.1%-34.9%, respectively. Nine readers used DWI as a supplement sequence, which modified interpretations on T2WI in 2.7% of cases (36/1341 [149 patients × 9 readers]) and mostly (33/36) changed mrCRT2W to non-mrCRoverall. The kappa values for mrTRG, mrCRT2W, and mrCRoverall were 0.56 (95% confidence interval: 0.49, 0.62), 0.55 (0.52, 0.57), and 0.54 (0.51, 0.57), respectively. No use of rectal gel, larger initial tumor size, and higher initial cT stage exhibited significant association with a higher interreader agreement for assessing mrCRoverall (P ≤ 0.042). Strong negative correlations were observed between the sensitivity and specificity of individual readers (coefficient, -0.718 to -0.963; P ≤ 0.019). Conclusion: Inter-reader agreement was moderate for assessing CR on post-CRT MRI. Readers' varying standards on MRI interpretation (i.e., threshold effect), along with the use of rectal gel, initial tumor size, and initial cT stage, were significant factors associated with inter-reader agreement.

Study on the Automatic Hull-form Optimal Design of Container Carriers Using HOTCONTAINER (HOTCONTAINER를 사용한 컨테이너선의 선형 최적 설계에 관한 연구)

  • Hee Jong Choi;Hyoun Mo Ku
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.118-126
    • /
    • 2024
  • In this paper, the research contents and results related to the automation of the hull-form optimal design of container ships are summarized. A container ship is a ship that generally operates near Froude number of 0.26. To implement hull-form optimal design automation for ships operating at this speed, an optimization algorithm, a hull-form change algorithm, a ship performance prediction algorithm, an automation algorithm, and an iterative calculation technique were applied to develop a numerical analysis computer program that enables hull-form optimal design automation of the container ship, and it was named HOTCONTAINER. In this study, a sensitivity analysis algorithm was developed and applied to appropriately set design variables for hull-form optimal design. To understand the reliability and real ship applicability of the developed algorithm, a numerical analysis was performed on KCS(KRISO Container Ship), a container ship that has been studied in various ways worldwide. Consequently, the optimal ship was derived, and the wave resistance, wave pattern, and wave height of the target and optimal ship were compared. In conclusion, compared the target ship, the optimal ship a 47.63% decrease in wave resistance, and the displacement and wet surface area decreased by 0.50% and 0.39%, respectively.

Analysis on the Relationship of Geotechnical Strength Parameters in the Marine Clay (해성점토의 지반 강도정수 상관성 분석)

  • Heo, Yol;Kwon, Seonwuk;Lee, Cheokeun;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.33-43
    • /
    • 2010
  • The physical characteristics of the marine clay in the Korean Peninsula, specifically Pusan areas of the south coast of Korea, were previously studied and reliable data from harbor construction projects were used for the relationship analysis of geotechnical strength parameters. The sample of marine clay classified to ML, MH, CL, CH and ML-CL from USCS were included for the analysis while the samples classified to SC were excluded in order to raise the degree of data analysis. Geotechnical strength properties, such as undrained shear strength, sensitivity ratio, and effective friction angle were analyzed and evaluated using the data obtained from unconfined compression test, triaxial compression test and field vane test. Abnormal values were extracted through statistical analysis. Moreover, the reliability of the results was improved by performing the evaluation of disturbance. Linear regression analysis was used for the relationship analysis, between undrained shear strength and depth. The relationship equation between undrained shear strength and depth was derived from the analysis of unconfined and triaxial compression test data of samples obtained at same location. Consequently, The relationship between depth and undrained shear strength is $S_u=0.015148D+0.04624$ and the undrained shear strength derived from the triaxial compression test was estimated to be about 1.26 of derived from the unconfined compression test.