• Title/Summary/Keyword: Reliability Prediction Equation

Search Result 99, Processing Time 0.027 seconds

Prediction Factors on the Organizational Commitment in Registered Nurses (간호사의 조직몰입 예측요인)

  • Han, Sang-Sook;Park, Sung-Wan
    • Journal of East-West Nursing Research
    • /
    • v.12 no.1
    • /
    • pp.5-13
    • /
    • 2006
  • Purpose: This research has been conducted in order to confirm the major factors that prediction organizational commitment in registered nurses. Method: The subjects were 350 registered nurses from 3 hospitals in Seoul. The sample for data collection consisted of 329 useable questionnaires (94% overall return rate) for 2 weeks. The Instrument tools utilized in this study were organizational commitment scale, empowerment scale, job stress scale and job satisfaction scale and thoroughly modified to verify validity and reliability. The collected data have been analyzed using SPSS 11.0 program. Three outliers which were bigger than 3 in absolute value were found, so after taking them off, Multiple Regression was used for further analysis. Result: The major factors that prediction organizational commitment in registered nurses were job satisfaction, empowerment, age and unit experience, which explained 51.9% of organizational commitment. Conclusion: It has been confirmed that the regression equation model of this research may serve as a organizational commitment prediction factors in Registered Nurses.

  • PDF

Dissimilar Friction Welding of Engine Exhaustive Valve and High Temperature Creep Prediction and Their Real-Time Evaluation by AE (엔진배기밸브의 내열강 이종재 마찰용접의 최적화와 고온 크리프의 실시간 예측 및 AE에 의한 실시간 평가)

  • Lee, Sang-Guk;Oh, Jung-Hwan;Oh, Sae-Kyoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 1999
  • The engine exhaustive valve became essential as the important element. The dissimmilar welding method of exhaustive valve head to stem was asked for manufacturing the engine exhaustive valve, for which the electric resistance are welding has been conventionally used, resulting in poor quality of the welded joint. In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld qudlity(such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve(SUH3-SUH35 dissimilar steels) were perfomed. The high temperature(500, 500, 600$^{circ}$C) creep properties prediction of the friction welded joint of SUH3-SUH35 was investigated relating to the initial strain meethod(ISM) as a new approach, resulting in obtaining an experimental equation of creep life prediction.

  • PDF

On the Implementation of Fuzzy Arithmetic for Prediction Model Equation of Corrosion Initiation

  • Do Jeong-Yun;Song Hun;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1045-1051
    • /
    • 2005
  • For critical structures and application, where a given reliability must be met, it is necessary to account for uncertainties and variability in material properties, structural parameters affecting the corrosion process, in addition to the statistical and decision uncertainties. This paper presents an approach to the fuzzy arithmetic based modeling of the chloride-induced corrosion of reinforcement in concrete structures that takes into account the uncertainties in the physical models of chloride penetration into concrete and corrosion of steel reinforcement, as well as the uncertainties in the governing parameters, including concrete diffusivity, concrete cover depth, surface chloride concentration and critical chloride level for corrosion initiation. The parameters of the models are regarded as fuzzy numbers with proper membership function adapted to statistical data of the governing parameters and the fuzziness of the corrosion time is determined by the fuzzy arithmetic of interval arithmetic and extension principle

Experimental Study for Prediction of Ground Vibration Responses by the Low-vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Kang, Sung-Hoo;Jeoung, Sug-Kyu;Park, Sun-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • This study investigated the SIP-method as a low-vibration, low-noise engineering method. The ground vibrations caused by the SIP-method were measured and analyzed in each step. From the analysis results, quantitative ground vibration values and reliable vibration estimation equations were proposed. Furthermore, the ground vibrations caused by the SIP-method were compared with the ground vibrations caused by other methods presented by existing studies. Based on the vibration estimation equation with 50 % reliability, the ground vibration values by the SIP-method at the distance of 10~150 m corresponded to 17~57 % of the ground vibration values by the equation proposed by Attewell & Famer, and 14~96 % of the ground vibration values by the equation proposed by Prof. Park in his study using a diesel drop hammer. These results showed that the ground vibration reduction effect of the SIP-method was higher those of other general engineering methods. Finally, the permissible scope of work using the SIP-method which meets the domestic vibration standards was presented.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

A Reliability Modeling of Software for Railway Signalling Systems (철도신호제어용 소프트웨어의 신뢰도 모델링에 관한 연구)

  • Lee, Jae-Ho;Shin, Duc-Ko;Jang, Sun-Bong;An, Beong-Ku;Jee, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.319-322
    • /
    • 2006
  • 안전필수시스템인 철도신호제어 시스템의 신뢰성은 하드웨어와 소프트웨어의 신뢰도에 의해서 결정된다. 하드웨어의 신뢰도는 상대적으로 많은 연구와 환경적 시험을 통하여 비교적 용이하게 예측하고 입증할수 있으나, 소프트웨어의 신뢰도는 반복실험결과에 의해서 추정해야 하므로, 입력 값에 따라서 신뢰도 추정치가 종속된다. 소프트웨어의 입력과 출력의 조합은 거의 Combinatoric으로 되기 때문 모든 경우를 시험하기는 블가능하다. 따라서 단순화된 방법에 의해서 소프트웨어의 신뢰도를 구하는 것이 중요한 문제로 부각되고 있다. 본 연구에서는 소프트웨어의 신뢰도를 예측하는 신뢰도 예측방정식(Reliability Prediction Equation)을 도출하여 신호제어시스템 소프트웨어에 대한 신뢰도 모델링을 수행하고자 한다.

  • PDF

Assessment on Design Applicability of Analysis of the Undrained Shear Strength in Korea Coastal Marine Clay (국내 해성점토의 비배수 전단강도 분석을 통한 설계 적용성 평가)

  • Kim, Myeong Hwan;Song, Chang Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.61-71
    • /
    • 2016
  • This study performed the physical and mechanical experiment on the samples of costal marine clays individually collected in western and southern regions to identify the characteristics of western and southern costal marine clay. Based on the experiment result, the characteristics of costal marine clay is identified undrained shear strength. Based on the experiment result on the physical and mechanical characteristics of costal marine clays, the regression is presented that can analyze the mechanical characteristics of undrained shear strength in costal marine clay of Korea, region of Korea and western-southern region. The correlation of uniaxial compressive strength and undrained shear strength was suitable for use of western-southern region correlation equation. The test result of Jeonnam Yeosu area compares with prediction results of previous researchers formula and western-southern region formula. Prediction results appear highest reliability on the 0.827 of coefficient of determination in the prediction results of the western-southern region formula.

Factors Predicting Depression in Hemodialysis Patients (혈액투석 환자의 우울 예측 요인)

  • Han Sang-Sook;Kim Young Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.7
    • /
    • pp.1353-1361
    • /
    • 2005
  • Purpose: This study was done to provide fundamental data for developing a depression prediction model by discovering main factors that affect depression in patients who do maintenance hemodialysis. Method: The subjects were 191 patients doing maintenance hemodialysis selected from outpatient dialysis clinics at 9 major general hospitals, The Instrument tools utilized in this study were adapted from depression, fatigue, sleep disturbance, stress, adaptation, symptoms, daily activities, and role limitation and thoroughly modified to verify reliability and validity. The collected data was analyzed with a SPSS-PC 11.0 Window Statistics Program for real numbers, percentage, average, standard deviation, and multiple regression. Results: The correlation factor for depression was (M=2.54) fatigue(M=3.12), sleep disturbance (M=2.82), stress(M=3.04), adaptation(M=2.53), daily activities(M=2.24), symptoms(M=2.37), and role limitation(M=2.24). The strongest factor that affected depression was explained by symptoms of the patients who performed hemodialysis. The analysis of the factors that affected depression revealed a $58.4\%$ prediction in symptoms, stress, role limitation, and adaptation. Conclusion: It has been confirmed that the regression equation model(Depression=7.351 + .266$^{\ast}$symptoms + .260$^{\ast}$stress -.l89$^{\ast}$adaptation + .057$^{\ast}$fatigue) of this research may serve as a prediction factor for depression in Hemodialysis Patients.

Prediction of Effect Zone for Marine Organisms Using Distance Attenuation Equations for Oceanic Noise (수중소음 거리감쇠 특성식을 이용한 해양생물 피해영향범위 예측)

  • Ha, Jeong-Min;Lee, Jong-Myeong;Lee, Jeong-Hoon;Gu, Dong-Sik;Choi, Byeong-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.14-19
    • /
    • 2012
  • There are insufficient data to consider the effect zone for the marine life of coastal fisheries, because no standard has been defined for the sound level of marine life. In this study, equations for distance attenuation were used to determine the effect zone for oceanic noises. A reference noise level was divided into 4 parts to consider the characteristics of the fishes, and the effect zone of each reference noise level was determined. To increase the reliability of the effect scope, approximately 100 repetitions of blasting work split into several parts by the boring depth, the sound level of the source caused by an increase in weight, and the effect zone were calculated using the prediction equation. According to the prediction, the maximum distance of the effect zone was 4.92 km.

Lifetime Prediction of Geogrids for Reinforcement of Embankments and Slopes through Time-Temperature Superposition

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.147-154
    • /
    • 2005
  • The creep resistance of geogrids is one of the most significant long-term safety characteristics used as the reinforcement in slopes and embankments. The failure of geogrids is defined as creep strain greater than 10%. In this study, the accelerated creep tests were applied to polyester geogrids at various loading levels of 30, 50% of the yield strengths and temperatures using newly designed test equipment. Also, the new test equipment permitted the creep testing at or above glass transition temperature($T_g$) of 75, 80, $85^{\circ}C$. The time-dependent creep behaviors were observed at various temperatures and loading levels. And then the creep curves were shifted and superposed in the time axis by applying time-temperature supposition principles. The shifting factors(AFs) were obtained using WLF equation. In predicting the lifetimes of geogrids, the underlying distribution for failure times were determined based on identification of the failure mechanism. The results confirmed that the failure distribution of geogrids followed Weibull distribution with increasing failure rate and the lifetimes of geogrids were close to 100 years which was required service life in the field with 1.75 of reduction factor of safety. Using the newly designed equipment, the creep test of geogrids was found to be highly accelerated. Furthermore, the time-temperature superposition with the newly designed test equipment was shown to be effective in predicting the lifetimes of geogrids with shorter test times and can be applied to the other geosynthetics.