• Title/Summary/Keyword: Reliability Method

Search Result 8,275, Processing Time 0.038 seconds

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

Reliability analysis of failure models in circuit-switched networks (회선교환망에서의 고장모델에 대한 신뢰도 분석)

  • 김재현;이종규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.1-10
    • /
    • 1995
  • We have analyzed the reliability of failure models in circuit-switched networks. These models are grid topology circuit-switched networks, and each node transmits a packet to a destination node using a Flooding routing method. We have assumed that the failure of each link and node is independent. We have considered two method to analyze reliability in these models : The Karnaugh Map method and joint probability method. In this two method, we have analyzed the reliability in a small grid topology circuit switched network by a joint probability method, and comared analytic results with simulated ones. For a large grid enormous. So, we have evaluated the reliability of the network by computer simulation techniques. As results, we have found that the analytic results are very close to simulated ones in a small grid topology circuit switched network. And, we have found that network reliability decreases exponentially, according to increment of link or node failure, and network reliability is almost linearly decreased according to increment of the number of links, by which call has passed. Finally, we have found an interesting result that nodes in a center of the network are superior to the other nodes from the reliability point of view.

  • PDF

Reliability-based design optimization of structural systems using a hybrid genetic algorithm

  • Abbasnia, Reza;Shayanfar, Mohsenali;Khodam, Ali
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1099-1120
    • /
    • 2014
  • In this paper, reliability-based design optimization (RBDO) of structures is addressed. For this purpose, the global search and optimization capabilities of genetic algorithm (GA) are combined with the efficiency and reasonable accuracy of an advanced moment-based finite element reliability method. For performing RBDO, three variants of GA including a real-coded, a binary-coded and an improved binary-coded GA are developed. In these methods, GA performs (finite element) reliability analyses to evaluate reliability constraints. For truss structures which include finite element modeling, reliability constraints are evaluated using finite element reliability analysis. Response sensitivity required for finite element reliability analysis is obtained by direct differentiation method (DDM) rather than finite difference method (FDM). The proposed methods are examined within four standard test examples and real-world design problems. The results illustrate the superiority and efficiency of the improved binary-coded GA. Results also illustrate that DDM significantly reduces the computational cost and improves the efficiency of the optimization procedure.

Human Reliability Analysis of Soft Control Operations in Nuclear Power Plants: Issues and Perspectives

  • Lee, Seung Jun;Jung, Wondea
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.87-96
    • /
    • 2013
  • Objective: The aim of this study is to describe several issues which should be considered in the human reliability analysis of soft control operations in nuclear power plants. Background: The operational environment of advanced main control rooms is totally different from that of conventional control rooms. The soft control is one of the major distinguishable features of the advanced main control rooms. The soft control operations should be analyzed to estimate the effects on human reliability. Method: The literatures, about task analysis, simulation data analysis, and a human reliability analysis method for the soft control, were reviewed. From the review, important issues for the human reliability analysis of the soft control were raised. Results: The results of task and simulation data analysis showed that the soft control characteristics could have large effect on human reliability and they should be considered in the human reliability analysis of the soft control operations. Conclusion: The soft control may affect human error and performance of operators. The issues described in this paper should be considered in the human reliability method for the advanced main control rooms. Application: The results of the soft control operation analysis might help to design more efficient interface and education/training program for preventing human errors. The described issues might help to develop a human reliability analysis method for soft control operations.

Application of Reliability Growth Management for Construction Equipment Development Process (건설장비 개발과정에서 신뢰성성장관리 적용방법에 대한 연구)

  • So, Young-Kug;Jeon, Young-Rok;Ryu, Byeong-Jin
    • Journal of Applied Reliability
    • /
    • v.13 no.3
    • /
    • pp.175-190
    • /
    • 2013
  • This study considers reliability growth management as the excellent method for construction equipment development with the effect on decreasing COPQ(Cost of Poor Quality Cost) of new products. MIL-HDBK-189A(1981) and RADC-TR-84-20(1984) standards provide a general concept of reliability growth management including to reliability growth test, models and FRACAS(Failure Reporting and Corrective Action System). There is no study how to apply reliability growth management to construction equipment(or machine) development. This paper propose the method to apply it to construction equipment development process from the reliability target setting for developing products to launching them at market. It is expecially showing how to set target reliability for new developing equipment and the development risk to reach the reliability target in detail.

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

A Method for Computing the Network Reliability of a Computer Communication Network

  • Ha, Kyung-Jae;Seo, Ssang-Hee
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.202-207
    • /
    • 1998
  • The network reliability is to be computed in terms of the terminal reliability. The computation of a terminal reliability is started with a Boolean sum of products expression corresponding to simple paths of the pair of nodes. This expression is then transformed into another equivalent expression to be a Disjoint Sum of Products form. But this computation of the terminal reliability obviously does not consider the communication between any other nodes but for the source and the sink. In this paper, we derive the overall network reliability which all other remaining nodes. For this, we propose a method to make the SOP disjoint for deriving the network reliability expression from the system success expression using the modified Sheinman's method. Our method includes the concept of spanning trees to find the system success function by the Cartesian products of vertex cutsets.

  • PDF

RELIABILITY-BASED OPTIMIZATION OF AIRFOILS USING A MOMENT METHOD AND PARSEC FUNCTION (모멘트 기법과 PARSEC 함수를 이용한 에어포일 신뢰성 기반 최적설계)

  • Lee, Jae-Hun;Kang, Hee-Youb;Kwon, Jang-Hyuk;Kwak, Byung-Man
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.50-54
    • /
    • 2010
  • In this study, reliability-based design optimizations of airfoils were performed. PARSEC function was used to consider the uncertainty of the aerodynamic shape for the reliability-based shape optimization of airfoils. Among aerodynamic performance. The accuracy of the reliability analysis was compared with other method and it was found that the moment method predicts the probability accurately. Deterministic and reliability-based optimizations were performed for shape of the RAE2822 airfoil and it was demonstrated that reliability-based optimizations the aerodynamic performances under uncertainties of the shape of the airfoil.

  • PDF

Overview of Reliability Rank Measures for Small Sample (소표본인 경우 신뢰성 순위 척도의 고찰)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.161-169
    • /
    • 2007
  • This paper presents three methods for expression of reliability measures for large and small data. First method is to express parametric estimation of cardinal reliability measure data for large sample, which requires numerous sample. Second is to obtain nonparametric distribution classification of ordinal reliability measure data for small sample. However it is difficult for field user to understand this method. Last method is to acquire parametric estimation of ordinal reliability measure data for small data. Because this method requires small sample and is comprehensive, we recommend this one among the proposed methods. Various reliability rank measures are presented.