• Title/Summary/Keyword: Reliability Measurement

Search Result 2,418, Processing Time 0.027 seconds

The Development of the Nursing Organization Culture Measurement tool (간호조직문화 측정도구 개발을 위한 연구)

  • Kim, Moon-Sil;Kim, Ji-Hyun;Han, Su-Jeong
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.10 no.2
    • /
    • pp.175-184
    • /
    • 2004
  • Purpose: The purpose of this study was to develop a nursing organization culture measurement tool and to test the validity and reliability of the tool. Method: This study conducted in three phases. In phase 1, theoretical framework choice, Phase 2, measurement items selection, Phase 3, testing of validity and reliability. In order to test validity and reliability of the measurement, data were collected from 915 nurses, working in the 22 hospitals with more 500 beds. The data obtatined were analyzed by SPSS-Win 10.0 program using percentages, Factor Analysis, Cronbach's alpha Coefficients. Result: As a result of the study, nursing organization culture measurement scale was consisted of 20 items, 4 factors. 4 factor explained 60.54% of the total variance, and the Cronbach's alpha of this scale was .8829. Conclusions: The Study supports the validity and reliability of the scales. Therefore, this scale can be effectively utilized for the evaluation of nursing organization culture in hospital setting.

  • PDF

Development of a Performance Measurement Scale for Hospital Nurses (임상 간호사의 간호업무성과 측정도구 개발)

  • Ko, Yu-Kyung;Lee, Tae-Wha;Lim, Ji-Young
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.3
    • /
    • pp.286-294
    • /
    • 2007
  • Purpose: The aim of this study was to develop a performance measurement scale for nurses in the hospital setting and to test the reliability and validity of the scale. Methods: This study was conducted in three phases including an application of conceptual framework, development of scale items, and test of validity and reliability of the scale. In order to test validity and reliability, data was collected from 1,966 nurses who work in twenty eight hospitals nation-wide. The data was analyzed by the SAS 8.0 program using descriptive statistics, factor analysis, and reliability coefficients. Results: The Performance measurement scale consisted of 4 factors which included competency, attitude, willingness to improve, and application of nursing process, and a total of 17 items. The Four factors explained 63.45% of the total variance, and Cronbach's alpha of the scale was.92. Conclusion: The performance measurement scale developed by this study is a reliable and valid instrument that is utilized effectively to evaluate the performance of hospital nurses. Furthermore, it could be used as a sloping stone to assess educational needs of nurses, develop professionalism among nurses, and improve quality of nursing care in the hospital setting.

The Relative·Absolute Reliability and Validity of Step Test in Patients with Chronic Stroke (만성 뇌졸중 환자들의 Step Test의 상대적·절대적 신뢰도와 타당도)

  • Lee, Byoungkwon;Choi, Hyunsoo;An, Seungheon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2017
  • Purpose : To examine the relative absolute reliability and validity of step test (ST) scores in subjects with chronic stroke. Method : A total of 27 stroke patients, participated in the study. A relative reliability index (intraclass correlation coefficient, ICC) was used to examine the level of agreement of inter-rater test-retest reliability for ST score. Absolute reliability indices, including the standard error of measurement(SEM) and the minimal detectable change (MDC), and limits of agreement by Bland and Altman analysis. The validity was demonstrated by spearman correlation of ST score with 10 m Walk Test (10mWT), Fugl-Meyer Assessment-Lower/Extremity (FMA-L/E)-total score, Berg Balance Scale (BBS)-total score. Result : An excellent inter-rater reliability in ST scores was found (paretic, ICC=0.993~0.996; nonparetic, ICC=0.982~0.991). In addition, excellent test-retest reliability was found (paretic, ICC=0.992; nonparetic, ICC=0.967). It all showed acceptable SEM of the ST score as paretic and nonparetic were 0.22 and 0.46 respectively (average score <10 %), and the MDC of the paretic and nonparetic were 0.61 and 1.27 respectively (possible highest score <20 %). indicating that measures had a small and acceptable measurement error. The ST score of paretic and nonparetic were also found to be significantly associated with 10MWT (r=0.77~0.79), FMA-LE scores (r=0.73~0.81) and BBS scores (r=0.72~0.76). Conclusion : The ST showed highly sufficient Inter-rater test-retest agreement and validity and acceptable measurement errors caused by due to chance variation in measurement. It also can be used by clinicians and researchers to assess the balance and mobility performance and monitor functional change in chronic stroke patients.

A Study on the Validity and Test-retest Reliability of the Measurement of the Head Tilt Angle of the Smart Phone Application 'KPIMT Torticollis Protractor'

  • Seong Hyeok Song;Ji Su Park;Ki Yeon Song;Ki Hyun Baek;Seung Hak Yoo;Ju Sang Kim
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.6
    • /
    • pp.177-184
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the concurrent validity and test-retest reliability of 'KPIMT Torticollis Protractor', a smart phone and I-pad application for convenient range of motion measurement, and 'Image J', an analysis software with high reliability and validity, according to head tilt and active cervical rotation angle. This was done to determine the clinical utility of 'KPIMT Torticollis Protractor'. Methods: Head tilt and active cervical spine rotation angles of 40 children with congenital muscular torticollis were measured using Image J and KPIMT Torticollis Protractor, respectively. The level of concurrent validity and inter-rater and intra-rater reliability between the two measurement methods were analyzed. Results: For forty participants, the concurrent validity between Image J and KPIMT Torticollis Protractor showed very high validity with ICC of ICC 0.977 (0.995-0.999), 0.994 (0.994-0.998), CVME% 0.71-0.72%, SEM% 0.31-0.34%, MDC% 0.86-0.94%. The test-retest intra-rater reliability showed very high reliability ICC 0.911 (0.911-0.966), CVME% 0.71%, SEM% 0.34-0.36%, MDC% 0.81-0.94%. The test-retest inter-rater showed very high reliability ICC 0.936 (0.933-0.957), CVME% 0.70%, SEM% 0.34-0.35%, MDC% 0.81-0.83%. Conclusion: The KPIMT Torticollis Protractor, a smart phone and IPD application, is a highly reliable and valid device for angle measurement in children with congenital myotonia and can be easily used in clinical practice.

Calibration Interval Analysis Method Based on F-test and Performance Index of Measurement Reliability Model Using Maintenance Data in Military Weapon Systems (군 무기체계에서 정비 데이터를 이용한 측정신뢰도 모델의 F-검정 및 성능지수 기반 교정주기 분석 기법)

  • Cha, Yun-bae;Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2191-2198
    • /
    • 2017
  • The PME(precision measurement equipment) used in the measurement to check the performance of the equipment in military weapon system is periodically calibrated to maintain measurement reliability during the life cycle. Previous studies suggest that reliability models are determined by considering sample size and characteristics of equipment. However, it may not be fit well to apply a single model assuming the same characteristic distribution for the maintenance date of many kinds of PMEs. This paper proposes that the most suitable calibration interval for maintenance data is selected through the F-test and the performance index evaluation among the calibration intervals estimated from the measurement reliability models assuming the characteristic of the bath-tub curve during the life cycle of various PMEs. The research results show that the reliabilities of various types of equipment are maintained during calibration intervals.

Improvement of Reliability of Static Execution Time Analysis Using Software Monitoring Technique (소프트웨어 감시 기법을 활용한 정적 실행시간 분석의 신뢰성 향상)

  • Kim, Yun-Kwan;Kim, Tae-Wan;Chang, Chun-Hyon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.37-45
    • /
    • 2010
  • A system which needs timely accuracy has to design and to verify correctly about execution-time for reliability. Accordingly, it is necessary for timing analysis tools, and much previous research worked. In timing analysis tool, there are two methods. One is a static analysis, and the other is a measurement based analysis. A static analysis is able to spend time less than a measurement based analysis method, but has low reliability of analysis result caused by hard to estimate time of I/O caused by various hardware. A measurement based analysis can be close analysis to real result, but it is hard to adapt to actual application, and spend a lot of time to get result of analysis. As such, this paper present a software monitoring architecture to supply reliability of static analysis process. In a presented architecture, it can select target as needed measurement through static analysis, and reuse result of measurement exist. Therefore, The architecture can reduce overload of time and performance for measurement, and improve the reliability which is the worst problem of static analysis.

A Case Study on the Compatibility Analysis of Measurement Systems in Automobile Body Assembly

  • Lee, Myung-Duk;Lim, Ik-Sung;Sung, Chun-Ja
    • International Journal of Reliability and Applications
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • The dimensional measurement equipment, such as Coordinate Measurement Machine (CMM), Optical Coordinate Measurement Machine (OCMM), and Checking Fixture (CF), take multiple dimensional measurements for each part in an automobile industry. Measurements are also recorded under different measurement systems to see if the responses differ significantly over these systems. Each measurement system (CMM, OCMM, and CF) will be considered as different treatments. This set-up provides massive amounts of process data which are multivariate in nature. Therefore, the multivariate statistical analysis is required to analyze data that are dependent on each other. This research provides step by step methodology for the evaluation procedure of the compatibility of measurement systems and clarify a systematic analyzation among the different measurement system's compatibility followed by number of case studies for each methodologies provided.

  • PDF

Reliability and Validity of the Goniometer for Hallux Valgus Angle Measurement (엄지발가락휨각도 측정을 위한 각도계의 신뢰도와 타당도)

  • Choung, Sung-Dae;Kang, Sun-Young;Kim, Moon-Hwan;Weon, Jong-Hyuck
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2013
  • The purpose of this study was to investigate the reliability and validity of goniometer measurements of the hallux valgus angle (HVA) compared to radiographic measurements, which are the current standard. Twenty subjects (10 female, 10 male) were recruited for this study (40 feet). The HVA of the subjects was measured using goniometer and radiographic measurement. In three trials, measurements were taken of each subject by two examiners using goniometer and radiographic measurements using radiography in a standing position. The reliability of the measurements was investigated using intraclass correlation coefficients (ICC(3,1)), and the validity was tested using the Pearson product-moment correlation coefficient and an independent t-test. The intra-rater reliability of left and right HVAs were poor (ICC=.409 and .341, respectively). The inter-rater reliability of left and right HVAs were poor and moderate (ICC=.303 and .501, respectively). Left and right HVAs measured using goniometer and radiographic measurements were also poor and moderate (Pearson r=.246 and .544, respectively). These results suggest that goniometer measurements of the HVA are inaccurate and have unacceptable validity compared to radiographic measurements.

The Study on the Development of Thrust Measurement System and Reliability Appraisal Technique for Low-Thrust Liquid Rocket Engine (저추력 액체로켓엔진의 추력 측정 장치 개발 및 신뢰도 평가 기법에 관한 연구)

  • Lee, Dong-Hyeong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin;Moon, Il-Yoon;Lee, Hyung-Sool
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.9-19
    • /
    • 2009
  • Accurate thrust measurement is very important when developing an engine of propulsion system. Especially for a low thrust liquid rocket engine(LRE), accuracy of thrust is seriously affected by thrust measurement errors and thurst losses which are caused by propellant supply system. In this study, a new thrust measurement system is developed for accurate thrust measurement of a low thurst LRE by minimizing these effects. Its thrust measurement range is 150~1500N and the maximum error is below 10N. Also, a reliability appraisal technique is investigated to improve reliability and accuracy of the thrust measurement system.

Reliability Analysis of Measurement System by Observability Identification technique (기관측성 판정기법에 의한 측정시스템의 신뢰도분석)

  • Lee, Eung-Hyuk;Hong, Kwak-No;Hyun, Moon-Young
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.125-128
    • /
    • 1987
  • This paper deals with the topological observability analysis and the derivation of a reliability evaluation formula of a measurement system for state estimation. An analogy of the DC power flow method to the DC circuit analysis is introduced, and all the relationship between power flows and phase angles are replaced by the corresponding current-voltage relation. As a result, a set of topological measurement equation expressed in the form of the incidence matrix is derived for the topological analysis, and the observability test is carried out by examining the rank of the measurement matrix. The reliability evaluation formula was derived experimentally by testing the observability of sample systems of IEEE-14, IEEE-3.0, IEEE-57.

  • PDF