• Title/Summary/Keyword: Reliability Function

Search Result 2,037, Processing Time 0.024 seconds

Lifetime Reliability Analysis of Irrigation System (관개조직의 수명기간 신뢰성 해석)

  • Kim Han-Joong;Lee Jeong-Jae;Im Sang-Joon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.35-44
    • /
    • 2003
  • A system reliability method is proposed to decide reliable serviceability of agricultural irrigation system. Even though reliability method is applied to real engineering situations involving actual life environments and maintaining costs, a number of Issues arise as a modeling and analysis level. This article use concepts that can be described the probability of failure with time variant and series-parallel system reliability analysis model. A proposed method use survivor function that can simulate a time-variant performance function for a lifetime before it is required essential maintenance or replacement to define a target probability of failure in agricultural irrigation canal. In the further study, it is required a relationship between a state of probability of failure and current serviceability to make the optimum repair strategy to maintain appropriate serviceability of an irrigation system.

On simple estimation technique for the reliability of exponential lifetime model

  • Al-Hemyari, Z.A.;Al-Saidy, Obaid M.;Al-Ali, A.R.
    • International Journal of Reliability and Applications
    • /
    • v.14 no.2
    • /
    • pp.79-96
    • /
    • 2013
  • Exponential distribution plays a key role in engineering reliability and its applications. The exponential failure model has been studied for years. This article introduces two new preliminary test estimators for the reliability function (R(t)) in complete and censored samples from the exponential model with the use of a prior estimation (${\theta}_0$) of the mean (${\theta}$). The proposed preliminary test estimators are studied and compared numerically with the existing estimators. Computer-intensive calculations for bias and relative efficiency show that for, different values of levels of significance and for varying constants involved in the proposed estimators, the proposed estimators are far better than classical and existing estimators.

  • PDF

Improvement of Reliability based Information Integration in Audio-visual Person Identification (시청각 화자식별에서 신뢰성 기반 정보 통합 방법의 성능 향상)

  • Tariquzzaman, Md.;Kim, Jin-Young;Hong, Joon-Hee
    • MALSORI
    • /
    • no.62
    • /
    • pp.149-161
    • /
    • 2007
  • In this paper we proposed a modified reliability function for improving bimodal speaker identification(BSI) performance. The convectional reliability function, used by N. Fox[1], is extended by introducing an optimization factor. We evaluated the proposed method in BSI domain. A BSI system was implemented based on GMM and it was tested using VidTIMIT database. Through speaker identification experiments we verified the usefulness of our proposed method. The experiments showed the improved performance, i.e., the reduction of error rate by 39%.

  • PDF

Application of Conjugate Distribution using Deductive and Inductive Reasoning in Quality and Reliability Tools (품질 및 신뢰성 기법에서 연역 및 귀납 추론에 의한 Conjugate 분포의 적용)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.27-33
    • /
    • 2010
  • The paper proposes the guidelines of application and interpretation for quality and reliability methodologies using deductive or inductive reasoning. The research also reviews Bayesian quality and reliability tools by deductive prior function and inductive posterior function.

  • PDF

Estimating the reliability and distribution of ratio in two independent variables with different distributions

  • Yun, Sang-Un;Lee, Chang-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.1017-1025
    • /
    • 2012
  • We consider estimations for the reliability in two independent variables with Pareto and uniform or exponential distributions. And then we compare the mean squared errors of two reliability estimators for each case. We also observe the skewness of densities of the ratio for each case.

A Comparative Study on Nonparametric Reliability Estimation for Koziol-Green Model with Random Censorship

  • Cha, Young-Joon;Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.231-237
    • /
    • 1997
  • The Koziol-Green(KG) model has become an important topic in industrial life testing. In this paper we suggest MLE of the reliability function for the Weibull distribution under the KG model. Futhermore, we compare Kaplan-Meier estimator, Nelson estimator, Cheng & Chang estimator, and Ebrahimi estimator with proposed estimator for the reliability function under the KG model.

  • PDF

Reliability Estimation for a Shared-Load System Based on Freund Model

  • Hong, Yeon-Woong;Lee, Jae-Man;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 1995
  • This paper considers the reliability estimation of a two-component shared-load system based on Freund model. Maximum likelihood estimator, order restricted maximum likelihood estimator and uniformly minimum variance unbiased estimator of the reliability function for the system are obtained. Performance of three estimators for moderate sample sizes is studied by simulation.

  • PDF

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

Distribution System Reliability Evaluation Considering Protective System (보호시스템을 고려한 배전계통의 신뢰도 평가)

  • Kim, S.H.;Jwa, C.K.;Choi, B.Y.;Choi, S.H.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1003-1005
    • /
    • 1997
  • To evaluate the quality of a system or its ability to perform a required function, it is necessary to quantify the reliability of that system. The reliability techniques are based on the concept of expected failure rate and average-outage-duration method. For each load point, the expected failure rate, average outage duration and average annual outage time are evaluated. This paper deals with the reliability evaluation for distribution system including the protection relay system. In evaluating the reliability, it suggests a method for the analysis of protective system reliability, that provides a probabilistic measure of the success of the protective apparatus to perform its intended function. The analysis shows the dependency of success on the reliability of many components, and the way this reliability may be enhanced by redundancy.

  • PDF

A Study on the Reliability of S/W during the Developing Stage (소프트웨어 개발단계의 신뢰도에 관한 연구)

  • Yang, Gye-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.61-73
    • /
    • 2009
  • Many software reliability growth models(SRGM) have been proposed since the software reliability issue was raised in 1972. The technology to estimate and grow the reliability of developing S/W to target value during testing phase were developed using them. Most of these propositions assumed the S/W debugging testing efforts be constant or even did not consider them. A few papers were presented as the software reliability evaluation considering the testing effort was important afterwards. The testing effort forms which have been presented by this kind of papers were exponential, Rayleigh, Weibull, or Logistic functions, and one of these 4 types was used as a testing effort function depending on the S/W developing circumstances. I propose the methology to evaluate the SRGM using least square estimater and maximum likelihood estimater for those 4 functions, and then examine parameters applying actual data adopted from real field test of developing S/W.