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Abstract
We consider estimations for the reliability in two independent variables with Pareto
and uniform or exponential distributions. And then we compare the mean squared errors
of two reliability estimators for each case. We also observe the skewness of densities of
the ratio for each case.
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1. Introduction

For two independent random variables X and Y, and a real number ¢, the probability
P(X < ¢Y) is as given in Woo (2006) : (i) it is reliability when ¢ = 1, (ii) it is distribution
of ratio X/(X +Y) when c=¢/(1 —¢) for 0 <t < 1.

The reliability will increase the need for the industry to perform systematic study for the
identifications and reduction of causes of failures. These reliability studies must be performed
by persons who can identify and quantify the modes of failures, know how to obtain and
analyze the statistics of failure occurrences, and can construct mathematical models of the
failure that depend on, for example, the parameters of material strength or design quality,
fatigue or wear resistance, and the stochastic nature of the anticipated duty cycle in Saunders
(2007).

Ali and Woo (2005) studied an inference on the reliability in a power function distribution,
and Woo (2007) also studied the reliability in two independent half-triangle distributions.
Moon and Lee (2009) studied an inference on the reliability P(Y < X) in the Gamma case.
Moon et al. (2009) studied inferences for the reliability and the ratio in an exponentiated
complementary power function distribution. Lee and Lee (2010) studied inference on the
reliability and the ratio in a right truncated Rayleigh distribution. Ali et al. (2010) studied
estimations of P(Y < X) when X and Y belong to different distribution families.

In this paper, we consider the estimation of the reliability in two independent random
variables with Pareto and uniform or exponential distributions. And then we compare mean
squared errors of two reliability estimators for each case. We also observe skewness of den-
sities of ratio for each case.
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2. Pareto-uniform distributions
2.1. Estimating the reliability
Let X and Y be independent random variables where X has a Pareto density given by
f(x) =apB*/z°t 2> 3>0, a(>0): known (2.1)

and Y has a uniform density over (0, §).

In this section, we consider the estimation of the reliability P(Y < X). As an application
of this case Y, representing the time to sustain a fixed level of the radioactivity, is a uniform
random variable and X, representing the life time of a white rat which is exposed to the
radioactivity, is a Pareto random variable.

Now, we consider the reliability R(p) = P(Y < X) as following :

Proposition 2.1 Let X and Y be two independent random variables where X has a Pareto
density (2.1) with 8 > 0 and known « (# 1) and Y has a uniform density over (0,0),
respectively for 8 < 6. Then(a) The reliability is given by

1

aY
R(p) = - “1=a" a# 1,

where p = 5/6.
(b) R(p) is a monotone function of p.

Proof. (a) For § < 0, thatis, 0 < p < 1

0 0 5 oo
R(p) = P(Y < X) = /ﬁ P(Y < 1) fx (x)dz = /5 ~px(a)d +/0 1 fx(@)de

1 « 1 «a
— 0)> — (8/6) = o — .
T B0 == (B/0) = —— P =P
d 0, if 1
(b) Since d—pR(p) Z O: if§<>a <1’ R(p) is a monotone function of 0 < p < 1.
This completes the proof. O

Therefore, the inference on R(p) is equivalent to that on p (McCool, 1991). And hence it
is sufficient for us to consider estimation of p instead of estimating R(p).

Assume X1, Xo,---,X, and Y1,Ys,---,Y,, be independent random samples from the
Pareto density (2.1) having 8 > 0, known « (# 1) and a uniform density over (0, ) for
B < 0, respectively. Then the estimators of S and 6 are given as follows (Johnson et al.,
1994) :

BZ X(l;n) = X(l) and é\: }/(m;m) = }/(m) (22)
From (2.2), the MLE of p is given by :

P=Xa)/Ym (2.3)
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The densities of X1y and Y{,,) are given as in Rotatgi (1976) by
fX(l)(x) = naﬁnax_na_la x > 6)
fyimy (@) = ma™ " 0<x <6, (2.4)

From the densities in (2.4) and formula 3.381(4) in Gradshteyn and Ryzhik (1965), we obtain
the followings :

Var(p) = [(na ~m 9 — e 120 = 1)2] p2, m>2 na>2. (2.5)

From the expectation in (2.5), an unbiased estimator p of p can be obtained as :

B (TLO( — 1)(?’77, — 1) ) X(l)
p - 9
nmao 1f('m)

which has variance :

(na —1)%(m —1)?
nma(na —2)(m — 2

Var(p) =

)—11p2,m>2, no > 2 (2.6)

From (2.5) and (2.6), we can calculate mean squared errors (MSEs) of the MLE p and the
unbiased estimator p as in Table 2.1.

Table 2.1 MSEs of the MLE 7 and an unbiased estimator 5 (units: p2)

n m p a=1/4 a=1/2 o =2 o =4
10 p 3.54630 .30556 .20403 18279

P .82250 .08000 12819 12574

10 2 foﬁ: 3.04678 .22027 .08348 .07190
p .80500 .06963 .05849 .05625

30 P 2.90887 19951 .05367 .04469

7 .80214 .06794 .03859 .03639

10 E .30556 .09337 18279 17415

P .08000 .02516 12574 12518

20 2 E .22027 .04971 .07190 .06767
p .06963 .01531 .05625 .05572

30 E 19951 .04044 .04469 .04164

P .06974 .01371 .03639 .03588

10 E .14044 .06135 17689 17153

p .03705 .01769 12532 12508

30 20 ,?); .08600 .02641 .06897 .06646
p .02709 .00792 .05586 .05563

30 P 07377 .01952 .04256 .04081

2 .02546 .00633 .03601 .03579

Because the inference on R(p) is equivalent to that on p by McCool (1991), we obtain the
following :
Fact 2.1 Assume X1, X5, -, X, and Y7,Y5, -+, Y,, be independent random samples from
Pareto density (2.1) having 8 > 0 and known « (3 1) and a uniform density over (0, §) for
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B < 0, respectively. Then for p = /6 <1, an estimator R(p) of the reliability R(p) = P(Y <
X) performs better than MLE R(p) in the sense of MSE.

Next we consider an interval estimation of p = 3/ <1, only when the density (2.1) has

B > 0 and known « (# 1).
The density of a pivot quantity P = 3/6 - Y(,,)/ X (1) is derived as :

mnao
fr(x) = (z"*t—2™ ) 0<x <1, m#na.
m — na

And then, for given p; >0, i = 1,2 with 0 <1 —p; — ps < 1,

X X
l(p1) - = ulp2)  ——
( Yim) Yim)

is an 100(1 — p; — p2)% conservative confidence interval for p = /6, where a lower limit
I(p1) and an upper limit u(p2) satisfy

l(p1) 1
/ fp(t)dt = p1 and / fp(t)dt = ps.
0 u

(p2)
Remark 2.1 (Large-sample confidence interval)

Based on the MLE p = X(1)/Y(;,) of p and the variance of p in (2.5), an approximate
symmetric 100(1 — v)% confidence interval for p is given by :

(5= 202 VT (D), 5+ 20 27/700(5) )
where mﬁ) = [nma/(na — 2)(m — 2) — n?m?a?/(na — 1)%(m — 1)2)p%

2.2. Distribution of the ratio

In this section, we consider the ratio Ry = Y/(X +Y), when X has a Pareto density
(2.1) with 8 > 0 and known « (# 1), and Y has a uniform random variable over (0, ),
respectively.

First, from the quotient density in Rohatgi (1976) and the integration, we can derive the
quotient density @ = X/Y as follows : For p = 5/6

@
folz) = ] [pr=2 — pz= ], ifa > p. (2.7)
From the quotient density (2.7), we can derive the density of the ratio Ry as follows :
«a
fry (r) = p— [pP(L=r)2=p*r® M1 —r)" 71, fO<r<(l4+p " (2.8)

From (2.8) and formula 3.194(1) in Gradshteyn and Ryzhik (1965), we can obtain the k-th
moments of Ry as follows :
For k=1,2,---,

1
E(Ry) = p 2 k+12F1(k,k—|—1;k+2;—1/p)

1
k+aﬁuhk+mk+a+n—um] (2.9)
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where o F (a, b; ¢; z) is the hypergeometric function given in Gradshteyn and Ryzhik (1965).

From the k-th moments in (2.9) and recursion formula 15.2.13 and formula 15.1.8 of the
hypergeometric function in Abramowitz and Stegun (1970), we can obtain mean, variance,
and coefficients of the skewness of the density (2.7) as in Table 2.2.

Table 2.2 Mean, variance and coefficient of the skewness
of the density (2.7) having o = 3

p mean variance skewness
1/8 .66477 .04112 -1.30625
1/6 .61037 .04188 -1.08848
1/4 .52793 .04010 -0.81648
1/2 .38203 .03009 0,01263

1 .25 .01694 0.02992

2 .14919 .00728 0.07935

4 .08292 .00253 0.21270

From Table 2.2, we observe the following trends :

Fact 2.3 When X and Y have independent Pareto density (2.1) with 8 > 0 and « (# 1),
and a uniform density over (0,0) for 3 < 6, respectively. For « = 3 and p = 3/6 < 1/4, the
density of the ratio Ry =Y /(X+Y) is left skewed, but elsewhere it is right skewed.

3. Pareto-exponential distributions

3.1. Estimating the reliability

Let X and Y be two independent random variables where X has a Pareto density (2.1)
with known « > 0 and Y has an exponential density with the mean ¢ > 0, respectively.

In this section, we consider the estimation of P(Y < X). As an application of this case X,
representing the time to repair a electronics when it broke down, is a Pareto random variable
and Y, representing the life time of an used electronics, is exponential random variable.

Now, we consider the reliability R(n) = P(Y < X) as following :

Proposition 3.1 Let X and Y be two independent random variables where X has a Pareto
density (2.1) with known a > 0 and Y has an exponential density with the mean o > 0,
respectively. Then (a) The reliability is given by

R(n) =1-an*I'(-a,n), n=p/o, (3.1)

where T'(a, z) is an incomplete gamma function.
(b) The reliability R(n) is a monotone increasing function of 1.
Proof. (a) R(n) = P(Y < X) = f;o P(Y < 2)fx(z)dz = fﬁoo (1 —e /%) fx(x)dx
=1-a(B/o)*T(-a, /o) =1 - anT(=a,n),n = B/o.
(b) Since dR(n)/dn = —adn®T(—a,n)/dn = an® T (1 — a,n), we get dR(n)/dn > 0.
This completes the proof. O
Since R(n) is a monotone function of n, the inference on R(n) is equivalent to that on 7

(McCool, 1991). And hence it is sufficient for us to consider the estimation of 7 instead of
estimating R(n).
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Assume X1, Xo, -+, X, and Y7,Y5, -+ ,Y,, have independent random samples from the
Pareto density (2.1) with known a > 0 and an exponential density with the mean o > 0,
respectively.

Then the estimators of 5 and 6 are given as follows (Johnson et al., 1994) :

B=Xum =X andd =Y Y;/m. (3.2)

i=1

From (3.2), the MLE of 7 is given by :
=08/5=Xu/ (Z m/m> . (3.3)
i=1

It is well-known by Rohatgi (1976) that > .~ Y; follows a gamma distribution with shape
m and scale o.

From the density of X(;) in (2.4), the distribution of >, Y; and formula 3.381(4) in
Gradshteyn and Ryzhik (1965), we obtain the followings :

B() = nmao
M= ta—1m-1 "
~ nm?a n?m2a? )
Var() = - S|t m>2, na>2.  (3.4)

(na —2)(m—1)(m—2) (na—1)2(m—1)
From the expectation in (3.4), an unbiased estimator 77 of  can be obtained as:

7= M.X(l)/ZE’
i=1

no

which has variance :

(na —1)%2(m —1)
Var(i) = [na(na —2)(m — 2)

— 1%, m > 2, na > 2. (3.5)

From (3.4) and (3.5), we can calculate mean squared errors (MSEs) of the MLE 7 and the
unbiased estimator 77 as in Table 3.1

Because the inference on R(n) is equivalent to that on 7 by McCool (1991), we obtain the
following :

Fact 3.2 Assume X, Xo,---,X, and Y7,Y5,---,Y,, be independent random samples from
a Pareto density (2.1) with known a > 0 and an exponential density with the mean o > 0,
respectively. Then for n = /0, an estimator R(7) for the reliability R(n) = P(Y < X)
performs better than the MLE R(7%) in the sense of MSE.
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Table 3.1 MSEs of the MLE 7 and an unbiased estimator 77 (units: n?)

n m n a=1/4 a=1/2 o =2 a =4
10 n 4.24074 .53704 .20403 18279

n 1.02500 .20000 12819 12574

10 20 72 3.33918 31774 .08348 .07190
7 .90000 12593 .05488 .05625

30 1;7\ 3.09360 .26108 .05367 .04469

n .86429 .10476 .03859 .03639

10 n .53704 .26698 18279 17415

n .20000 .13906 12574 12518

20 20 ’fl\ 31774 12281 .07190 .06767
n 12593 .06875 .05625 .05573

30 ’71\ .26108 .08662 .04469 .04164

n .10476 .04866 .03639 .03588

10 7 .32984 .22161 17689 17153

n 15227 13077 12532 12508

30 20 i .16575 .09389 .06898 .06646
n .08114 .06097 .05586 .05563

30 ﬁ 12415 .06214 .04256 .04081

7 .06082 .04103 .03601 .03579

Next, we consider a confidence interval for n = 8/o as follows :
From formula 3.381(3) in Gradshteyn and Ryzhik (1965), the density of a pivot quantity
T =n->",Yi/X() is obtained by the following :

where fooc fr(t)dt =1 is easily obtained from formula 13.39 in Oberhettinger (1974).
To find a lower and an upper limits of confidence interval for n = 8/0, we first obtain the
following by changing the order of double integration.

Lemma 3.3 Let fr(z) = az®™-T(c,z), >0, a>0, b+c>0and c> 0 be a density
form, where I'(c,z) = [ e~'t"'dt. For given 0 < p < 1, if there exists U(p) satisfying

p=[35, fr(t)dt, then U(p) = [(D(b+ ) — pb/a)/T(c)]".

From Lemma 3.3 and the density fr(x) of a pivot quantity 7', an upper and a lower limits
of the confidence interval for n = 3/0 can be obtained as :

U(ps) = [[(m)(1 — pa2)/T(m — na)]™, L(p1) = [[(m)p1/T(m — na)]™,if m > na.
And then, for given p; >=0, i =1,2, with0 <1 —p; —py <1,
m m
<L(p1) X/ Y Vi, Ulpa) 'X(l)/ZYz)
i=1 i=1
is an 100(1 — p1 — p2)% conservative confidence interval for n = /0.

3.2. Distribution of the ratio

In this section, we consider the ratio Rx = X/(X +Y), when X has a Pareto density (2.1)
with known o > 0 and Y has an exponential density with the mean o > 0, respectively.
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From the quotient density in Rohatgi (1976) and formula 3.1 in Oberhettinger and Badii
(1973), we can derive the quotient density V =Y/X as follows :

fr(z) = an®a®"'P(1 — a, nz), >0, n=F/o, (3.6)

where T'(a, z) is an incomplete gamma function of x.
From the quotient density (3.6), we can derive the density function of the ratio Rx as
follows :

fry (@) =an*(1—r)* Yot Tl —a, n-(1—=7)/r), 0<r<l1. (3.7)
From the density (3.6) of the quotient V, the k-th moments of the ratio Ry is represented

by MacRobert’s E-function in Gradshteyn and Ryzhik (1965).
Proposition 3.4 For k=1,2,---  k

E(RY%) = (a/T(k)) - E(k,a,3;0 + 1;7) for n = B/o,

where E(a, b, ¢; d; z) is MacRobert’s E-function.
Proof. E(R%)=a(B/0)* [[°(1+v) v dv fgz/a e ttodt
= a(B/o)? fto:oo e tt—odt fo‘ﬁ'/ﬁ v (1 +v) " Fdo
fooo t2e=t Fy (k, oy a+; —ot/B)dt
= (B/0)? [;° a® e Pe/7y Fy (K, as o+ 1; —x)da
= (a/T(k)E(k,a,3; 0 + 15 B /o).
This completes the proof. O

From the density function of the ratio Rx, the k-th moment of the ratio Rx is represented
by the following double integral (3.9)

1 /(A=)
E(RI)C() _ ana/ ) / ) ,r,lcfafl(l 7 r)o"lto"zefl/tdtdr. (38)
r= t=!

From approximate computations of double integral (3.9) of the k-th moments for the ratio
Rx, approximate means, variances and coefficients of the skewness for fr, (x) in (3.7) can
be obtained as in Table 3.2.

Table 3.2 Approximate means, variances and coefficients of skewness of the density (3.7)

a n mean variance skewness
1/4 611338 .09039 -0.35672

1/2 70459 .07223 -0.81466

1/2 1 17914 .06047 -1.53796
2 .82990 .05912 -2.32454

4 .85388 .07060 -2.61068

1/4 .39507 .05892 0.70027

1/2 .52536 .05658 -0.02147

3 1 .65613 .04413 -0.24592
2 77082 .02783 -0.75850

4 .85799 .01527 -1.76913

From Table 3.2, we observe the following trends :
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Fact 3.5 Let X and Y be two independent random variables where X has a Pareto density
(2.1) with known v > 0 and Y has an exponential density with the mean o > 0, respectively.
Then for n = /0, when (a,n) = (3,1/4), the density of the ratio Rx = X/(X +Y) is right
skewed, but elsewhere it is left skewed.
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