• 제목/요약/키워드: Reliability Design

검색결과 5,442건 처리시간 0.04초

철근콘크리트구조물의 현행 LRFD 설계식 검정 (Calibration of Current LRFD Formats for R.C. Structure Design)

  • 김상효;배규웅;박흥석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.35-40
    • /
    • 1990
  • Because of the inherent random nature of most manmade and environmental loadings and materials as well as the emperfect structural analysis, the reliability-based structural design has been recognized as a rational approach and the probability-based design criteria has been successfully developed for many standards. In order to do this it is necessary to establish target reliability levels, for which the reliability levels inherent in present design practice will be used as a rational guide. In this study the reliability levels implied in current practices, therefore, are investigated using the load and resistance models developed for domestic uses.

  • PDF

복원가능 시스템 설계를 위한 복원도 할당 (Resilience Allocation for Resilient Engineered System Design)

  • 윤병동;후차오;왕핑펭;윤정택
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1082-1089
    • /
    • 2011
  • Most engineered systems are designed with high levels of system redundancies to satisfy required reliability requirements under adverse events, resulting in high systems' LCCs (Life-Cycle Costs). Recent years have seen a surge of interest and tremendous advance in PHM (Prognostics and Health Management) methods that detect, diagnose, and predict the effects of adverse events. The PHM methods enable proactive maintenance decisions, giving rise to adaptive reliability. In this paper, we present a RAP (Resilience Allocation Problem) whose goal is to allocate reliability and PHM efficiency to components in an engineering context. The optimally allocated reliability and PHM efficiency levels serve as the design specifications for the system RBDO (Reliability-Based Design Optimization) and the system PHM design, which can be used to derive the detailed design of components and PHM units. The RAP is demonstrated using a simplified aircraft control actuator design problem resulting in a highly resilient actuator with optimally allocated reliability, PHM efficiency and redundancy for the given parameter settings.

A Framework to Automate Reliability-based Structural Optimization based on Visual Programming and OpenSees

  • Lin, Jia-Rui;Xiao, Jian;Zhang, Yi
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.225-234
    • /
    • 2020
  • Reliability-based structural optimization usually requires designers or engineers model different designs manually, which is considered very time consuming and all possibilities cannot be fully explored. Otherwise, a lot of time are needed for designers or engineers to learn mathematical modeling and programming skills. Therefore, a framework that integrates generative design, structural simulation and reliability theory is proposed. With the proposed framework, various designs are generated based on a set of rules and parameters defined based on visual programming, and their structural performance are simulated by OpenSees. Then, reliability of each design is evaluated based on the simulation results, and an optimal design can be found. The proposed framework and prototype are tested in the optimization of a steel frame structure, and results illustrate that generative design based on visual programming is user friendly and different design possibilities can be explored in an efficient way. It is also reported that structural reliability can be assessed in an automatic way by integrating Dynamo and OpenSees. This research contributes to the body of knowledge by providing a novel framework for automatic reliability evaluation and structural optimization.

  • PDF

최적신뢰성에 의한 P.S.C Box Girder교의 연구 (A Study on Optimum Reliability of P.S.C Box Girder Bridge)

  • 정철원;유한신;나기현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권4호
    • /
    • pp.139-144
    • /
    • 1999
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabiliistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering experience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on P.S.C Box Girder Bridge system which could possibly replace optimum design based traditional provisions of the current code, based on the Neldel-Mead Method reliability theory.

  • PDF

초기 단계의 성능분포를 활용한 신뢰성 인증시험의 설계 (Design of Reliability Qualification Test Based on Performance Distribution at the Earlier Stage)

  • 정해성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권3호
    • /
    • pp.131-138
    • /
    • 2012
  • A design of reliability qualification test based on performance distribution is developed. In general, the performance of an item degrades as the time goes by and the failure of an item occurs when the performance degradation reaches the pre-determined critical level. This article considers the reliability qualification test based on a more tightened critical value at the earlier stage to reduce the evaluation testing time and cost. A numerical example is provided to illustrate how to use the developed reliability qualification test.

해상풍력발전기 자켓 지지구조물의 최적설계 및 신뢰성해석 (Design Optimization and Reliability Analysis of Jacket Support Structure for 5-MW Offshore Wind Turbine)

  • 이지현;김수영;김명현;신성철;이연승
    • 한국해양공학회지
    • /
    • 제28권3호
    • /
    • pp.218-226
    • /
    • 2014
  • Since the support structure of an offshore wind turbine has to withstand severe environmental loads such as wind, wave, and seismic loads during its entire service life, the need for a robust and reliable design increases, along with the need for a cost effective design. In addition, a robust and reliable support structure contributes to the high availability of a wind turbine and low maintenance costs. From this point of view, this paper presents a design process that includes design optimization and reliability analysis. First, the jacket structure of the NREL 5-MW offshore wind turbine is optimized to minimize the weight and stresses, while satisfying the design requirements. Second, the reliability of the optimum design is evaluated and compared with that of the initial design. Although the present study results in a new optimum shape for a jacket support structure with reduced weight and increased reliability, the authors suggest that the optimum design has to be accompanied by a reliability analysis during the design process, as well as reliability based design optimization if needed.

INTERACTIVE SYSTEM DESIGN USING THE COMPLEMENTARITY OF AXIOMATIC DESIGN AND FAULT TREE ANALYSIS

  • Heo, Gyun-Young;Lee, Tae-Sik;Do, Sung-Hee
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.51-62
    • /
    • 2007
  • To efficiently design safety-critical systems such as nuclear power plants, with the requirement of high reliability, methodologies allowing for rigorous interactions between the synthesis and analysis processes have been proposed. This paper attempts to develop a reliability-centered design framework through an interactive process between Axiomatic Design (AD) and Fault Tree Analysis (FTA). Integrating AD and FTA into a single framework appears to be a viable solution, as they compliment each other with their unique advantages. AD provides a systematic synthesis tool while FTA is commonly used as a safety analysis tool. These methodologies build a design process that is less subjective, and they enable designers to develop insights that lead to solutions with improved reliability. Due to the nature of the two methodologies, the information involved in each process is complementary: a success tree versus a fault tree. Thus, at each step a system using AD is synthesized, and its reliability is then quantified using the FT derived from the AD synthesis process. The converted FT provides an opportunity to examine the completeness of the outcome from the synthesis process. This study presents an example of the design of a Containment Heat Removal System (CHRS). A case study illustrates the process of designing the CHRS with an interactive design framework focusing on the conversion of the AD process to FTA.

Integrating Machine Reliability and Preventive Maintenance Planning in Manufacturing Cell Design

  • Das, Kanchan;Lashkari, R.S.;Sengupta, S.
    • Industrial Engineering and Management Systems
    • /
    • 제7권2호
    • /
    • pp.113-125
    • /
    • 2008
  • This paper presents a model for designing cellular manufacturing systems (CMS) by integrating system cost, machine reliability, and preventive maintenance (PM) planning. In a CMS, a part is processed using alternative process routes, each consisting of a sequence of visits to machines. Thus, a level of 'system reliability' is associated with the machines along the process route assigned to a part type. Assuming machine reliabilities to follow the Weibull distribution, the model assigns the machines to cells, and selects, for each part type, a process route which maximizes the overall system reliability and minimizes the total costs of manufacturing operations, machine underutilization, and inter-cell material handling. The model also incorporates a reliability based PM plan and an algorithm to implement the plan. The algorithm determines effective PM intervals for the CMS machines based on a group maintenance policy and thus minimizes the maintenance costs subject to acceptable machine reliability thresholds. The model is a large mixed integer linear program, and is solved using LINGO. The results point out that integrating PM in the CMS design improves the overall system reliability markedly, and reduces the total costs significantly.

IDEF1을 이용한 신뢰성 정보 모델 (A Reliability Information Model Using IDEF1)

  • 장중순;안동근;김민성
    • 품질경영학회지
    • /
    • 제25권4호
    • /
    • pp.185-205
    • /
    • 1997
  • Reliability management requires many activities such as conceptual design, detail design, reliability evaluation and analysis, life testing, and environmental screening, etc.. To perform these activities effectively, a lot of information are required : information for failure mechanism, failure modes, part characteristics, and environmental conditions, etc.. These information should be managed to be used effectively and accurately in reliability activities and feedback to product design and manufacturing. This study identified and characterized these information and classified them according to the reliability activities commonly adopted in many manufacturing industries. IDEF1 was used to define and characterize the flow and the relationship of these reliability information and model is proposed which represents the structure of reliability information systems. The proposed model can be used as a basis for developing reliability management softwares.

  • PDF

모델기반 시스템엔지니어링을 활용한 해양플랜트 안전시스템(SIS, Safety Instrumented System)의 신뢰도 분석 및 안전설계 지식 모델링 (Knowledge Modeling of Reliability Analysis and Safety Design for Offshore Safety Instrument System with MBSE (Model-Based Systems Engineering))

  • 배정훈;정민재;신성철
    • 대한조선학회논문집
    • /
    • 제55권3호
    • /
    • pp.222-235
    • /
    • 2018
  • The hydrocarbon gas leak in the offshore plant can cause large accidents and lead to significant damages to human, property and environment. For prevention of fire or explosion accidents from gas leak, a SIS(Safety Instrumented System) should be installed. In the early stage of the offshore design, required SIL(Safety Integrated Level) is determined and reliability analysis is performed to verify the design in reliability aspects. This study collected data, information related to reliability analysis and created knowledge model of safety design for the offshore system with MBSE(Model-Based Systems Engineering) concept. Knowledge model could support safety engineer's design tasks as the guidance of reliability analysis procedure of safety design and make good conversation with other engineers in yard, class, company, etc.