• Title/Summary/Keyword: Reliability Allocation

Search Result 185, Processing Time 0.023 seconds

Development and Testing of Satellite Operation System for Korea Multipurpose Satellite-I

  • Mo, Hee-Sook;Lee, Ho-Jin;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The Satellite Operation System (SOS) has been developed for a low earth orbiting remote sensing satellite, Korea Multipurpose Satellite-I, to monitor and control the spacecraft as well as to perform the mission operation. SOS was designed to operate on UNIX in the HP workstations. In the design of SOS, flexibility, reliability, expandability and interoperability were the main objectives. In order to achieve these objectives, a CASE tool, a database management system, consultative committee for space data systems recommendation, and a real-time distributed processing middle-ware have been integrated into the system. A database driven structure was adopted as the baseline architecture for a generic machine-independent, mission specific database. Also a logical address based inter-process communication scheme was introduced for a distributed allocation of the network resources. Specifically, a hotstandby redundancy scheme was highlighted in the design seeking for higher system reliability and uninterrupted service required in a real-time fashion during the satellite passes. Through various tests, SOS had been verified its functional, performance, and inter-face requirements. Design, implementation, and testing of the SOS for KOMPSAT-I is presented in this paper.

  • PDF

- The Study on Improving the Customer Reliability through Demand Planning Using Collaboration System in SCM - (SCM 상에서 협업시스템을 애용한 수요계획 수립을 통한 고객 신뢰성 향상에 관한 연구)

  • Park Young Ki;Oh Sung Hwan;Kang Kyong Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The company was focusing on production which was partial mission rather than acquiring the information of customer in intensive process industry. The company accepted loss which is from over-production, losing of opportunity. After changing to web environment, supply chain is more complicated and need of customer is more various. As a result the company hard works on controlling production rates, production quantities in production area and gathering exact information which is about available resource and available quantities. Cooperated demand planning have to get decreasing of inventory, improving of customer service in supply chain management. Specially demand planning that considers allocation of capacity is executed in Iron-Industry. Demand planning must be classified by customer, region and supply position level.

A Comparative Study on Optimal Generation Maintenance Scheduling with Marginal Maintenance Cost and Levelized Risk Methods (한계보수비용법 및 위험지수 평준화법에 의한 최적전원보수계획의 비교)

  • 이봉용;심건보
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.9-17
    • /
    • 1992
  • Proper resource allocation is also a very important topic in power system problems, especially in operation and planning. One such is optimal maintenance problem in operation and planning. Least cost and highest reliability should be the subjects to be pursued. A probabilistic operation simulation model developed recently by authors is applied to the proboem of optimal maintenance scheduling. Three different methods are compared, marginal maintenance cost, levelized risk and maintenance space. The method by the marginal maintenance costs shows the least cost, the highest reliability and the highest maintenance outage rates. This latter characteristics may considerably influence the results of genetation planning, because the usual maintenance outages obtained from the other methods have shown to be lower.

  • PDF

Efficient Grid Resource Scheduling Model with Resource Reliability Measurement (자원 신뢰성 측정을 통한 효율적인 그리드 자원 스케줄링 모델)

  • Park, Da-Hye;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.129-136
    • /
    • 2006
  • Grid computing has been appeared for solving large-scaled data which are not solved by a single computer. Grid computing is a new generation platform which connects geographically distributed heterogeneous resources. However, gathering heterogeneous distributed resources produces many difficult problems. Especially. to assure resource reliability is one of the most critical problems. So, we propose a grid resource scheduling model using grid resource reliability measurement. We evaluate resource reliability based on resource status data and apply it to the grid scheduling model in DEVSJAVA modeling and simulation. This paper evaluates parameters such as resource utilization, job loss and average turn-around time and estimates experiment results of our model in comparison with those of existing scheduling models such as a random scheduling model and a round-robin scheduling model. These experiment results showed that the resource reliability measurement scheduling model provides efficient resource allocation and stable Job processing in comparison with a random scheduling model and a round-robin scheduling model.

  • PDF

On Software Reliability Engineering Process for Weapon Systems (무기체계를 위한 소프트웨어의 신뢰성 공학 프로세스)

  • Kim, Ghi-Back;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.332-345
    • /
    • 2011
  • As weapon systems are evolving into more advanced and complex ones, the role of the software is becoming heavily significant in their developments. Particularly in the war field of today as represented by the network centric warfare(NCW), the reliability of weapon systems is definitely crucial. In this context, it is inevitable to develop software reliably enough to make the weapon systems operate robustly in the combat field. The reliability engineering activities performed to develop software in the domestic area seem to be limited to the software reliability estimations for some projects. To ensure that the target reliability of software be maintained through the system's development period, a more systematic approach to performing software reliability engineering activities are necessary from the beginning of the development period. In this paper, we consider the software reliability in terms of the development of a weapon system as a whole. Thus, from the systems engineering point of view, we analyze the models and methods that are related to software reliability and a variety of associated activities. As a result, a process is developed, which can be called the software reliability engineering process for weapon systems (SREP-WS), The developed SREP-WS can be used in the development of a weapon system to meet a target reliability throughout its life-cycle. Based on the SREP-WS, the software reliability could also be managed quantitatively.

Asymmetric Joint Scheduling and Rate Control under Reliability Constraints in Cognitive Radio Networks (전파인지 네트워크에서 신뢰성 보장 비대칭 스케줄-데이터율 결합제어)

  • Nguyen, Hung Khanh;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.23-31
    • /
    • 2012
  • Resource allocation, such as joint rate control and scheduling, is an important issue in cognitive radio networks. However, it is difficult to jointly consider the rate control and scheduling problem due to the stochastic behavior of channel availability in cognitive radio networks. In this paper, we propose an asymmetric joint rate control and scheduling technique under reliability constraints in cognitive radio networks. The joint rate control and scheduling problem is formulated as a convex optimization problem and substantially decomposed into several sub-problems using a dual decomposition method. An algorithm for secondary users to locally update their rate that maximizes the utility of the overall system is also proposed. The results of simulations revealed that the proposed algorithm converges to a globally optimal solution.

Design and Performance Evaluation of Software RAID for Video-on-Demand Servers (주문형 비디오 서버를 위한 소프트웨어 RAID의 설계 및 성능 분석)

  • Koh, Jeong-Gook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.167-178
    • /
    • 2000
  • Software RAID(Redundant Arrays of Inexpensive Disks) is defined as a storage system that provides capabilities of hardware RAID, and guarantees high reliability as well as high performance. In this paper, we propose an enhanced disk scheduling algorithm and a scheme to guarantee reliability of data. We also design and implement software RAID by utilizing these mechanism to develop a storage system for multimedia applications. Because the proposed algorithm improves a defect of traditional GSS algorithm that disk I/O requests arc served in a fixed order, it minimizes buffer consumption and reduces the number of deadline miss through service group exchange. Software RAID also alleviates data copy overhead during disk services by sharing kernel memory. Even though the implemented software RAID uses the parity approach to guarantee reliability of data, it adopts different data allocation scheme. Therefore, we reduce disk accesses in logical XOR operations to compute the new parity data on all write operations. In the performance evaluation experiments, we found that if we apply the proposed schemes to implement the Software RAID, it can be used as a storage system for small-sized video-on-demand servers.

  • PDF

Optimal Reliability Strategy for k-out-of-n System Considering Redundancy and Maintenance (중복설계 및 예방정비를 고려한 수리가능 k-out-of-n 시스템 신뢰도 최적화 전략)

  • Lee, Youn-Ho;Jung, Kwang-Kyun;Yoon, Tae-Dong;Kwon, Ki-Sang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.118-127
    • /
    • 2014
  • The configuration such as series, parallel and k-out-of-n of a repairable system directly affects its reliability. The maintenance strategy can also affect the overall performance of the system. The objective of this work is to investigate the possible trade-off between the configuration of a repairable k-out-of-n system and its maintenance strategy. The redundancy is considered to be the design decision variables, whereas the preventive maintenance period is considered to be the maintenance decision variables. The optimization model is used to minimize the overall life cycle cost associated with the system, considering constraint on reliability. Finally, genetic algorithm is used to find the optimal values for the decision variables. The result is compared with optimal values for considering redundancy and maintenance respectively.

ARM: Adaptive Resource Management for Wireless Network Reliability (무선 네트워크의 신뢰성 보장을 위한 적응적 자원 관리 기법)

  • Lee, Kisong;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2382-2388
    • /
    • 2014
  • To provide network reliability in indoor wireless communication systems, we should resolve the problem of unexpected network failure rapidly. In this paper, we propose an adaptive resource management (ARM) scheme to support seamless connectivity to users. In consideration of system throughput and user fairness simultaneously, the ARM scheme adaptively determines the set of healing channels, and performs scheduling and power allocation iteratively based on a constrained non-convex optimization technique. Through intensive simulations, we demonstrate the superior performance results of the proposed ARM scheme in terms of the average cell capacity and user fairness.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.