• Title/Summary/Keyword: Releasing Temperature

Search Result 116, Processing Time 0.026 seconds

Fundamental Study on the Probability of Oyster Shell Desiccant Cooling System Driven by Renewable Energy of Photo-Voltaic Effect

  • Kim, Myoung-Jun;Yu, Jik-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.387-393
    • /
    • 2008
  • This paper has dealt with the probability of oyster shell desiccant cooling system driven by renewable energy of photo-volatic effect with fundamental experiment. The test materials for desiccant are activated charcoal, silica-gel, hi-dry, and oyster shell. The experiments were mainly performed with focusing on the observation of surface features, adsorption amounts of the adsorbent species, and the effect of temperature. Oyster shell has sufficient probability for using as desiccant in a air-conditioning system. Moreover, the heat releasing device would be attached in the system, the system based with oyster shell can be operated with high efficiency.

Finite Element Analysis of Solidification Processes of Axisymmetric Castings Considering Phase Change and Contact (상변화와 접촉을 고려한 축대칭 주조 응고공정의 유한요소 해석)

  • Ghoo, B.Y.;Keum, Y.T.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.126-141
    • /
    • 1997
  • The purpose of this research is to develope a FEM program for analyzing solidification processes of axisymmetric casting, considering phase changes and the contact between the metal and mold. Tempera- ture recovery method is employed fro considering the phase changes releasing the latent heat and the coin- cident node method is used for calculating the amount of heat transfer between the metal and mold. Tan- gent modulus algorithm is adopted for calculating flow stress and a gap element is employed for modeling the interface between the mold and metal in finding deformed shapes. In order to verify the developed program, axisymmetric aluminum and steel casting processes are simulated. Temperature distribution, phase front position, and shrinkage and porosity creation are compared with measurements, FIDAP results, and good agreements are examined.

  • PDF

A 32 by 32 Electroplated Metallic Micromirror Array

  • Lee, Jeong-Bong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.288-294
    • /
    • 2002
  • This paper presents the design, fabrication and characterization of a 32 by 32 electroplated micromirror array on a glass, a low cost substrate. Approaches taken in this work for the fabrication of micromachined mirror arrays include a line addressing scheme, a seamless array design for high fill factor, planarization techniques of polymeric interlayers, a high yield methodology for the removal of sacrificial polymeric interlayers, and low temperature and chemically safe fabrication techniques. The micromirror is fabricated by aluminum and the size of a single micromirror is 200 $\mu\textrm{m}{\;}{\times}200{\;}\mu\textrm{m}$. Static deflection test of the micro-mirror has been carried out and pull-in voltage of 44V and releasing voltage of 30V was found.

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.

Life History of Obelia bicuspidata Clarke, 1875(Hydrozoa, Campanulariidae)in Korea (한국산 쌍뾰족혹히드라(히드라충강, 종히드라과)의 생활사)

  • Lee, Woo-Jin;Park, Jung-Hee
    • Animal Systematics, Evolution and Diversity
    • /
    • v.17 no.2
    • /
    • pp.171-177
    • /
    • 2001
  • The life history of Obelia bicuspidata Clarke, 1975 (Hydrozoa, Campanulariidae) was studied in its habitats, Jak-yk Island, Korea and in the laboratory It grows mainly attaching to the under sides of small rocks immersed in muddy shores, or the shade surfaces of oyster shells. The hydoids liberate medusae. The medusa buds develope twice per year, during from March to June and from September to October The optimum water temperature for the hydroids is between 4$^{\circ}C$ and 8$^{\circ}C$ and at the temperature above 9$^{\circ}C$ the hydroids begin to degenerate. In August the surface water temperature is around $25^{\circ}C$ and the hydrothecae are all disappeared. The hydroids grow best during from February to May. The medusae are small, 0.3 mm high, 0.45 mm wide and require about 9 days at room temperature (about 2$0^{\circ}C$) for mature after releasing. Obelia bicuspidata turned out to be boreal species in this work.

  • PDF

Influence of Bath Temperature on Electroless Ni-B Film Deposition on PCB for High Power LED Packaging

  • Samuel, Tweneboah-Koduah;Jo, Yang-Rae;Yoon, Jae-Sik;Lee, Youn-Seoung;Kim, Hyung-Chul;Rha, Sa-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.323-323
    • /
    • 2013
  • High power light-emitting diodes (LEDs) are widely used in many device applications due to its ability to operate at high power and produce high luminance. However, releasing the heat accumulated in the device during operating time is a serious problem that needs to be resolved to ensure high optical efficiency. Ceramic or Aluminium base metal printed circuit boards are generally used as integral parts of communication and power devices due to its outstanding thermal dissipation capabilities as heat sink or heat spreader. We investigated the characterisation of electroless plating of Ni-B film according to plating bath temperature, ranging from $50^{\circ}C$ to $75^{\circ}C$ on Ag paste/anodised Al ($Al_2O_3$)/Al substrate to be used in metal PCB for high power LED packing systems. X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM) and X-ray Photoelectron Spectroscopy (XPS) were used in the film analysis. By XRD result, the structure of the as deposited Ni-B film was amorphous irrespective of bath temperature. The activation energy of electroless Ni-B plating was 59.78 kJ/mol at the temperature region of $50{\sim}75^{\circ}C$. In addition, the Ni-B film grew selectively on the patterned Ag paste surface.

  • PDF

Increased accuracy of estrus prediction using ruminoreticular biocapsule sensors in Hanwoo (Bos taurus coreanae) cows

  • Daehyun Kim;Woo-Sung Kwon;Jaejung Ha;Joonho Moon;Junkoo Yi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.759-766
    • /
    • 2023
  • Visual estrus observation can only be confirmed at a rate of 50%-60%, which is lower than that obtained using a biosensor. Thus, the use of biosensors provides more opportunities for artificial insemination because it is easier to confirm estrus than by visual observation. This study determines the accuracy of estrus prediction using a ruminoreticular biosensor by analyzing ruminoreticular temperature during the estrus cycle and measuring changes in body activity. One hundred and twenty-five Hanwoo cows (64 with a ruminal biosensor in the test group and 61 without biosensors in the control group) were studied. Ruminoreticular temperatures and body activities were measured every 10 min. The first service of artificial insemination used gonadotropin-releasing hormone (GnRH)-based fixed-time artificial insemination protocol in the control and test groups. The test group received artificial insemination based on the estrus prediction made by the biosensor, and the control group received artificial insemination according to visual estrus observation. Before artificial insemination, the ruminoreticular temperature was maintained at an average of 38.95 ± 0.05℃ for 13 h (-21 to -9 h), 0.73℃ higher than the average temperature observed at -48 h (38.22 ± 0.06℃). The body activity, measured using an indwelling 3-axis accelerometer, averaged 1502.57 ± 27.35 for approximately 21 h from -4 to -24 h before artificial insemination, showing 203 indexes higher body activity than -48 hours (1299 ± 9.72). Therefore, using an information and communication techonology (ICT)-based biosensor is highly effective because it can reduce the reproductive cost of a farm by accurately detecting estrus and increasing the rate of estrus confirmation in cattle.

A ecological survey of Ceratovacuna japonica (Takahashi) (Hemiptera, Aphididae) in Korea (일본납작진딧물(Ceratovacuna japonica)의 야외 생태특성 조사)

  • Lee, YoungBo;Yoon, Hyung-Joo;Lee, Kyeong-Yong;Kim, Nam-Jung
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.2
    • /
    • pp.123-128
    • /
    • 2014
  • We carried out an ecological survey for Ceratovacuna japonica, which lives in bamboos, at the experimental field of National Academy of Agricultural Science, Suwon and the several natural fields in Korea from 2010 to 2011. The releasing methods of C. japonica on Pseudosasa japonica was more effective at the brushing-off method than the pining-attached method. The successful rate of releasing was the highest at green house than others such as at outdoor, vinyl green house and in a insects net conditions. The survival limit of C. japonica was closely associated with the lowest temperature ($-10^{\circ}C$) of vegetative limit of P. japonica for over wintering because of two fields of Ilsan lake park and Guri ecological park showed falling down below $-15^{\circ}C$ two times in January. It provides for a reasonable distribution information of C. japonica that is restricted to south of Han River. However, the middle of Korea has rarely fallen down below $-10^{\circ}C$. Therefore, we consider that a successful rearing of C. japonica may be the most suitable in green house condition to overcome winter period.

Microbead based micro total analysis system for Hepatitis C detection (마이크로비드를 이용한 초소형 C형 간염 검출 시스템의 제작)

  • Sim, Tae-Seok;Lee, Bo-Rahm;Lee, Sang-Myung;Kim, Min-Soo;Lee, Yoon-Sik;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1629-1630
    • /
    • 2006
  • This paper describes a micro total analysis system ($\mu$ TAS) for detecting and digesting the target protein which includes a bead based temperature controllable microchip and computer based controllers for temperature and valve actuation. We firstly combined the temperature control function with a bead based microchip and realized the on-chip sequential reactions using two kinds of beads. The PEG-grafted bead, on which RNA aptamer was immobilized, was used for capturing and releasing the target protein. The target protein can be chosen by the type of RNA aptamer. In this paper, we used the RNA aptamer of HCV replicase. The trypsin coated bead was used for digesting the released protein prior to the matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI TOF MS). Heat is applied for release of the captured protein binding on the bead, thermal denaturation and trypsin digestion. PDMS microchannel and PDMS micro pneumatic valves were also combined for the small volume liquid handling. The entire procedures for the detection and the digestion of the target protein were successfully carried out on a microchip without any other chemical treatment or off-chip handling using $20\;{\mu}l$ protein mixture within 20 min. We could acquire six matched peaks (7% sequence coverage) of HCV replicase.

  • PDF

Ovarian Development of Conger Eel in Korea, Conger myriaster, in Captivity

  • Ki, Se-Un;Park, Chung-Kug;Lee, Kyoung-Woo;Lee, Kyoung-Sik;Park, Joon-Taek;Lee, Won-Kyo
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.269-277
    • /
    • 2021
  • Effects of water temperature and hormones on ovarian development of conger eel in Korea were investigated. Ovarian development was analyzed by measuring gonadosomatic index (GSI) and oocyte diameter with histological methods. At rearing water temperatures of 12℃, 14℃, and 16℃, GSI value increased from 3.66 at the start of the experiment to 7.44, 8.82, and 7.34 at the end of the experiment, respectively. At rearing water temperatures of 12℃, 14℃, and 16℃, egg diameter increased from 245.11-300.25 ㎛ at the start of the experiment to 377.62-480.27 ㎛, 396.72-498.54 ㎛, and 382.29-475.69 ㎛ at the end of the experiment, respectively. Follicular oocyte development revealed that primary yolk globule stage observed from January to March. It entered to secondary yolk globule stage in April and remained at the same stage until July. As a result of examining effects of three hormones (human chorionic gonadotropin (HCG), luteinizing hormone releasing hormone analogue (LHRHa), and salmon pituitary extraction (SPE) on ovarian development, HCG was found to be the most effective one. The progress from diapause of the secondary yolk globule stage to migratory nucleus stage of oocytes could be induced by treating fish with HCG at 1,000 IU/kg. The effect of hormone treatment on ovarian development of conger eel in Korea was the most effective at water temperature of 14℃.