• Title/Summary/Keyword: Relaying signal

Search Result 144, Processing Time 0.023 seconds

Performance Analysis of Incremental relaying Method using Multiple Relays in the Cognitive Radio (인지통신에서 다수의 중계기를 이용한 증분형 중계 기법의 성능 분석)

  • Choi, Moon-Geun;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.61-66
    • /
    • 2011
  • Cooperative Communication using relays which include network separated into fixed cooperative relaying and incremental cooperative relaying defending on method receiving signal from a source. If some nodes included network is Primary user ad source and destination, another is Secondary user as relay, The nodes included network excepting source can help PU transmit signal. In the case of all of SU playing a role as relay, destination can get diversity gain, but useless time slot is consumed for transmitting signal. So in this paper, we analysis cooperative relaying which a node succeeding to sense primary signal send signal to destination. We use matlab simulation tool and consider AF, DF, fixed relaying, incremental relaying

Energy Savings in OFDM Systems through Cooperative Relaying

  • Khuong, Ho Van;Kong, Hyung-Yun
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • Energy savings in orthogonal frequency division multiplexing (OFDM) systems is an active research area. In order to achieve a solution, we propose a new cooperative relaying scheme operated on a per subcarrier basis. This scheme improves the bit error rate (BER) performance of the conventional signal-to-noise ratio (SNR)-based selection relaying scheme by substituting SNR with symbol error probability (SEP) to evaluate the received signal quality at the relay more reliably. Since the cooperative relaying provides spatial diversity gain for each subcarrier, thus statistically enhancing the reliability of subcarriers at the destination, the total number of lost subcarriers due to deep fading is reduced. In other words, cooperative relaying can alleviate error symbols in a codeword so that the error correction capability of forward error correction codes can be fully exploited to improve the BER performance (or save transmission energy at a target BER). Monte-Carlo simulations validate the proposed approach.

  • PDF

Outage Capacity Analysis for Cooperative DF and AF Relaying in Dissimilar Rayleigh Fading Channels

  • Shrestha, Suchitra;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.361-370
    • /
    • 2008
  • Cooperative relaying permits one or more relay to transmit a signal from the source to the destination, thereby increasing network coverage and spectral efficiency. The performance of cooperative relaying is often measured as outage probability. However, appropriate measure for the channel quality is outage capacity. Although the outage probability for cooperative relaying protocol has been analyzed before, very little research has been addressed for the outage capacity. This paper is the first of its kind to derive a closed-form analytical solution of outage capacity using fixed decode and forward relaying and amplify and forward relaying in dissimilar Rayleigh fading channels, considering channel coefficients known to the receiver side. The analytical results show a tradeoff between the SNR and the number of relays for specific outage capacity. A comparison between decode and forward relaying and amplify and forward relaying shows that decode and forward relaying outperforms amplify and forward relaying for a large number of relays.

SNR-Based Selective Relaying Scheme in Wireless Networks (무선 네트워크에서의 SNR기반 선택적 전달 기법)

  • Ju, MinChul;Kwon, Tai-Gil;Cho, Jin-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.369-371
    • /
    • 2015
  • In this letter, we analyze the outage performance of the signal-to-noise ratio (SNR)-based selective relaying in a relay network, where the relay terminal may retransmit the received signal or remain silent based on the received SNR of the link from the source to the relay. For the proposed relaying scheme, we derive the exact outage probability.

On the Performance of Incremental Opportunistic Relaying with Differential Modulation over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.731-742
    • /
    • 2010
  • We propose an incremental relaying protocol in conjunction with opportunistic communication for differential modulation with an aim to make efficient use of the degrees of freedom of the channels by exploiting a imited feedback signal from the destination. In particular, whenever the direct link from the source to the destination is not favorable to decoding, the destination will request the help from the opportunistic relay (if any). The performance of the proposed system is derived in terms of average bit error probability and achievable spectral efficiency. The analytic results show that the system assisted by the opportunistic relaying can achieve full diversity at low SNR regime and exhibits a 30㏈ gain relative to direct transmission, assuming single-antenna terminals. We also determine the effect of power allocation on the bit error probability BEP) performance of our relaying scheme. We conclude with a discussion on the relationship between the given thresholds and channel resource savings. Monte-Carlo simulations are performed to verify the analysis.

Development of Learning Board for the Digital Relay Using DSP (DSP를 이용한 학습용 계전기 보드 개발)

  • Ahn, Yong-Jin;Choi, Young-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.187-189
    • /
    • 2002
  • A relaying board is developed for the study of digital relay, which is based on Digital Signal Processor(DSP). The present development is capable of understanding and application for digital relay hardware. To support the design of relaying hardware, first A/D convertor MMI and serial port for communication are embedded, and next a booting cables of three types are supplied. More particularly the relaying board that is convinient to test digital relaying algorithm. This paper concludes by implementing the distance relaying algorithm into a relaying board, the hardware test results show practically high performance.

  • PDF

A Study on the Digital Distance Relaying Techniques Using Kalman Filtering (칼만필터링에 의한 디지털 거리계전 기법에 관한 연구)

  • 김철환;박남옥;신명철
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.3
    • /
    • pp.219-226
    • /
    • 1992
  • In this study, Kalman filtering theory is applied to the estimation of symmetrical components from fault voltage and current signal when it comes to faults with the power system. An algorithm for estimating fault location accurately and quickly by calculating the symmetrical components from the extracted fundamental voltage phasor and current phasor is presented. Also, to confirm the validity of digital distance relaying techniques using Kalman filtering, the experimental results obtained by using the digital simulation of power system is shown.

  • PDF

Error Rate and Capacity Analysis for Incremental Hybrid DAF Relaying using Polar Codes

  • Madhusudhanan, Natarajan;Venkateswari, Rajamanickam
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • The deployment of an incremental hybrid decode-amplify and forward relaying scheme is a promising and superior solution for cellular networks to meet ever-growing network traffic demands. However, the selection of a suitable relaying protocol based on the signal-to-noise ratio threshold is important in realizing an improved quality of service. In this paper, an incremental hybrid relaying protocol is proposed using polar codes. The proposed protocol achieves a better performance than existing turbo codes in terms of capacity. Simulation results show that the polar codes through an incremental hybrid decode-amplify-and-forward relay can provide a 38% gain when ${\gamma}_{th(1)}$ and ${\gamma}_{th(2)}$ are optimal. Further, the channel capacity is improved to 17.5 b/s/Hz and 23 b/s/Hz for $2{\times}2$ MIMO and $4{\times}4$ MIMO systems, respectively. Monte Carlo simulations are carried out to achieve the optimal solution.

High Capacity Relay Protocols for Wireless Networks

  • Fan, Yijia;Krikidis, Ioannis;Wang, Chao;Thompson, John S.;Poor, H. Vincent
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.196-206
    • /
    • 2009
  • Over the last five years, relaying or multihop techniques have been intensively researched as means for potentially improving link performance of wireless networks. However, the data rates of relays are often limited because they cannot transmit and receive on the same frequency simultaneously. This limitation has come to the attention of researchers, and recently a number of relay techniques have been proposed specifically to improve the data efficiency of relaying protocols. This paper surveys transmission protocols that employ first single relays, then multiple relays and finally multiple antenna relays. A common feature of these techniques is that novel signal processing techniques are required in the relay network to support increased data rates. This paper presents results and discussion that highlight the advantages of these approaches.

Optimal Power Allocation for NOMA-based Cellular Two-Way Relaying

  • Guosheng, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.202-215
    • /
    • 2023
  • This paper proposes a non-orthogonal multiple access (NOMA) based low-complexity relaying approach for multiuser cellular two-way relay channels (CTWRCs). In the proposed scheme, the relay detects the signal using successive interference cancellation (SIC) and re-generates the transmit signal with zero-forcing (ZF) transmit precoding. The achievable data rates of the NOMA-based multiuser two-way relaying (TWR) approach is analyzed. We further study the power allocation among different data streams to maximize the weighted sum-rate (WSR). We re-form the resultant non-convex problem into a standard monotonic program. Then, we design a polyblock outer approximation algorithm to sovle the WSR problem.The proposed optimal power allocation algorithm converges fast and it is shown that the NOMA-TWR-OPA scheme outperforms a NOMA benchmark scheme and conventional TWR schemes.