• Title/Summary/Keyword: Relay Channel

Search Result 398, Processing Time 0.021 seconds

Distributed Multi-Hop Relay Scheme to Reduce Delay-Constrained Broadcast Outage Probability (전달 시간 제한이 있는 브로드캐스트 아웃티지 확률을 감소시키는 분산적인 다중 홉 중계 기법)

  • Ko, Byung Hoon;Byun, Ilmu;Rhee, Duho;Jeon, Ki Jun;Kim, Beom Mu;Lee, Seong Ro;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.219-226
    • /
    • 2013
  • Distributed multi-hop relay scheme to reduce delay-constrained outage probability for broadcast network is proposed. We consider multi-hop relay scheme, which is similar to distributed beamforming, where multiple nodes simultaneously relay packets, and we propose channel access control and power control for relaying nodes to satisfy energy constraint. Compared with flooding which is multi-hop relay scheme used for ZigBee, the proposed scheme is better in terms of outage probability and average reception throughput.

Optimal Amplify-and-Forward Scheme for Parallel Relay Networks with Correlated Relay Noise

  • Liu, Binyue;Yang, Ye
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.599-608
    • /
    • 2014
  • This paper studies a parallel relay network where the relays employ an amplify-and-forward (AF) relaying scheme and are subjected to individual power constraints. We consider correlated effective relay noise arising from practical scenarios when the relays are exposed to common interferers. Assuming that the noise covariance and the full channel state information are available, we investigate the problem of finding the optimal AF scheme in terms of maximum end-to-end transmission rate. It is shown that the maximization problem can be equivalently transformed to a convex semi-definite program, which can be efficiently solved. Then an upper bound on the maximum achievable AF rate of this network is provided to further evaluate the performance of the optimal AF scheme. It is proved that the upper bound can be asymptotically achieved in two special regimes when the transmit power of the source node or the relays is sufficiently large. Finally, both theoretical and numerical results are given to show that, on average, noise correlation is beneficial to the transmission rate - whether the relays know the noise covariance matrix or not.

Power Allocation for Opportunistic Full-Duplex based Relay Selection in Cooperative Systems

  • Zhong, Bin;Zhang, Dandan;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3908-3920
    • /
    • 2015
  • In this paper, performance analysis of full-duplex (FD) relay selection under decode-and-forward (DF) relaying mode is carried out by taking into account several critical factors, including the distributions of the received signal-to-noise ratio (SNR) and the outage probability of wireless links. The tradeoff between the FD and half-duplex (HD) modes for relay selection techniques is also analyzed, where the former suffers from the impact of residual self-interference, but the latter requires more channel resources than the former (i.e., two orthogonal channels are required). Furthermore, the impact of optimal power allocation (OPA) on the proposed relay-selection scheme is analyzed. Particularly, the exact closed-form expressions for outage probability of the proposed scheme over Rayleigh fading channels are derived, followed by validating the proposed analysis using simulation. Numerical results show that the proposed FD based scheme outperforms the HD based scheme by more than 4 dB in terms of coding gain, provided that the residual self-interference level in the FD mode can be substantially suppressed to the level that is below the noise power.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Design of Time-Division Half-Duplex Estimate and Forward Relaying System (시분할 반이중 추정 후 전달 릴레이 시스템 설계)

  • Hwang, In-Ho;Kim, Jee-Young;Lee, Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.227-238
    • /
    • 2012
  • In this paper, we propose a practical time-division half-duplex Estimate and Forward (EF) relaying protocol. The conventional EF relaying protocol works well only when the relay node is near the destination node. The proposed EF relaying protocol, however, determines adaptively relay parameters such as the quantization level of relay node and the power allocation between source and relay nodes according to the channel conditions. By doing so, the proposed EF relaying protocol provides low probability of bit error even when the relay node is far from the destination node. Consequently, the proposed EF protocol is suitable for the mobile relay systems. It is shown by simulations that the proposed EF relaying protocol shows lower bit error rate for all relay positions than a conventional EF protocol.

Applied Method of Energy Harvesting for Multi-Relay Environment (다중 중계기 환경에 대한 에너지 하베스팅의 적용 방안)

  • Kim, Tae-Wook;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.69-74
    • /
    • 2014
  • In this paper, an energy harvesting scheme is investigated in the multi-relay cooperation communication. Our proposal is to maximize the diversity gain and overcome the disadvantages of the limited power wireless devices. The best relay is selected based on the maximizing channel gains from source to relays so that the harvested energy at selected relay is best. If an internal power of the best relay is lower than a defined target power, the best relay will harvest the energy from the source, and the help of the source-destination link is changed to the second best relay. By this operation method, the diversity gain is maintained and the performance of the network is improved. Finally, performance of the proposed protocol is analyzed in terms of bit error rate, utilization efficiency, power collection efficiency.

Resource Allocation Schemes for Legacy OFDMA Systems with Two-Way DF Relay (양방향 복호전달 릴레이를 사용하는 레거시 OFDMA 시스템에서의 자원 할당 기법)

  • Seo, Jongpil;Han, Chulhee;Park, Seongho;Chung, Jaehak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.593-600
    • /
    • 2014
  • OFDMA systems solves frequency selective fading problem and provides improved performance by optimal allocation of subcarriers and transmit power. Two-way relay systems provide improved spectral efficiency compared to that of the conventional half-duplex relay using bidirectional communications. In legacy OFDMA system such as WiBro, two-way DF relay utilization causes pilot re-assignment and impossibility of channel estimation and decoding at relay nodes by self-interference. In this paper, resource allocation schemes for legacy OFDMA systems with two-way DF relay are proposed. The proposed schemes allocate subcarriers considering destinations nodes which are connected to relay nodes as individual nodes which are directly connected to a base station. Subsequently, the proposed schemes compensate bandwidth loss due to orthogonal allocations by overlapped allocating unused subcarriers at other noes. Numerical simulations show that the proposed resource allocation schemes provide improved performance compared with orthogonal allocation.

The study for Increasing Service Coverage Area and Enhancing Handover in WiBro Networks (와이브로기반의 서비스영역 확대와 핸드오프 보장에 관한 연구)

  • Park Chi-Ho;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.113-120
    • /
    • 2006
  • This thesis deals with solutions such as coverage area extension, reduction of the shadow region and performance enhancement of handover caused by structural modification of WiBro network. The More far the distance of RAS(Radio Access Station) and SS(Subscriber Station) is in micro cell, the more bad the quality of channel environment becomes owing to radio interference. Consequently, it causes the deterioration of the throughput and also the deterioration of communication quality in many sides. In fact, most users of WiBro are located in the region, the QPSK region which is bad in point of channel quality. It brings the service complaint by user. We select RS(relay station) to solve the matter caused by channel environment in this cell, and extend coverage and improve the performance of handover call blocking.

A Low Complexity Subcarrier Pairing Scheme for OFDM Based Multiple AF Relay Systems (OFDM 기반 다중 증폭 후 전달 릴레이 시스템에서 낮은 복잡도를 가지는 부반송파 페어링 기법)

  • Jeon, Eun-Sung;Yang, Jang-Hoon;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.12-17
    • /
    • 2009
  • We consider an OFDM based multiple AF relaying systems. Since the channel between first hop (source station-relay station) and second hop (relay station -destination station) varies independently, the subcarrier in the first hop can be paired to another subcarrier in the second hop for the increase of the system capacity. The conventional pairing which uses the brute force searching requires large complexity while giving optimal pairing for maximum system capacity. In this paper, we present sub-optimal subcarrier pairing scheme with low complexity. Every RS firstly pairs the subcarrier with the highest channel gain in the first hop to the subcarrier with highest channel gain in the second hop. The pair with the highest SNR among all the pairs is determined as final selected pair and the corresponding subcarriers are not selected at other RSs in the next paring iteration. This process is repeated until all the subcarriers are paired. Simulation results show the proposed pairing scheme achieves near optimal performance with low complexity.

A Joint Resource Allocation Scheme for Relay Enhanced Multi-cell Orthogonal Frequency Division Multiple Networks

  • Fu, Yaru;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.288-307
    • /
    • 2013
  • This paper formulates resource allocation for decode-and-forward (DF) relay assisted multi-cell orthogonal frequency division multiple (OFDM) networks as an optimization problem taking into account of inter-cell interference and users fairness. To maximize the transmit rate of system we propose a joint interference coordination, subcarrier and power allocation algorithm. To reduce the complexity, this semi-distributed algorithm divides the primal optimization into three sub-optimization problems, which transforms the mixed binary nonlinear programming problem (BNLP) into standard convex optimization problems. The first layer optimization problem is used to get the optimal subcarrier distribution index. The second is to solve the problem that how to allocate power optimally in a certain subcarrier distribution order. Based on the concept of equivalent channel gain (ECG) we transform the max-min function into standard closed expression. Subsequently, with the aid of dual decomposition, water-filling theorem and iterative power allocation algorithm the optimal solution of the original problem can be got with acceptable complexity. The third sub-problem considers dynamic co-channel interference caused by adjacent cells and redistributes resources to achieve the goal of maximizing system throughput. Finally, simulation results are provided to corroborate the proposed algorithm.