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This paper studies a parallel relay network where the 
relays employ an amplify-and-forward (AF) relaying 
scheme and are subjected to individual power constraints. 
We consider correlated effective relay noise arising from 
practical scenarios when the relays are exposed to 
common interferers. Assuming that the noise covariance 
and the full channel state information are available, we 
investigate the problem of finding the optimal AF scheme 
in terms of maximum end-to-end transmission rate. It is 
shown that the maximization problem can be equivalently 
transformed to a convex semi-definite program, which can 
be efficiently solved. Then an upper bound on the 
maximum achievable AF rate of this network is provided 
to further evaluate the performance of the optimal AF 
scheme. It is proved that the upper bound can be 
asymptotically achieved in two special regimes when the 
transmit power of the source node or the relays is 
sufficiently large. Finally, both theoretical and numerical 
results are given to show that, on average, noise 
correlation is beneficial to the transmission rate — 
whether the relays know the noise covariance matrix or 
not. 
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I. Introduction 

The amplify-and-forward (AF) relaying scheme has been 
widely studied in the context of cooperative communications 
[1]–[3]. Besides its simplicity, the AF schemes can also be 
developed to exploit the multi-antenna gain in certain power 
constrained multiple-relay networks.  

The problem of finding the optimal AF scheme in terms of 
maximum end-to-end transmission rate has been extensively 
studied for single-user systems in previous works [4]–[8]. The 
optimal AF schemes have been determined for the parallel- 
relay network under sum or individual relay power constraints, 
or both [4]–[6]. Under only the sum relay power constraint was 
the optimal scaling factor derived in a closed form [4]–[5]. 
However, the problem becomes more challenging when the 
relays are subject to individual power constraints. It was first 
solved in [6] with a semi-closed solution. Moreover, the AF 
relay optimization problems have also been considered for 
more general layered relay networks — for example, in [7] and 
[8]; however, only suboptimal schemes were derived. 

The AF relaying scheme has also attracted great attention in 
the recent research community for multi-user relaying systems. 
Analog network coding [9] extends the AF-based one-way 
relaying scheme to a two-way relay channel to support 
communications in two directions via a two-step protocol. The 
problem of finding the optimal rate region of a two-way relay 
channel with a two-step AF protocol has been studied for 
different network setups [10]–[12]. The authors in [10] 
characterized the maximum achievable rate region for the two-
way relay channel with a single multi-antenna relay, while the 
maximum rate region for the AF two-way relay channel with 
multiple single-antenna relays has been studied in [11] and [12] 
under both sum and individual relay power constraints. 
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The aforementioned schemes have all been built upon the 
assumption of independent relay noise. However, in wireless 
networks, noise correlation between nodes may occur due to 
common interference or noise propagation. In this aspect, it is 
worthwhile to mention the pioneer work [13], in which 
correlated relay noise is considered for a parallel n-relay 
network. The optimal AF scheme was obtained in closed form 
under a sum relay power constraint. Later, in [14], the optimal 
AF scheme was proposed for the same network model under a 
receive power constraint where relays were also exposed to 
correlated noise. To develop optimal AF schemes under 
different constraints, noise covariance and instantaneous 
channel coefficients are required. This important issue was first 
solved in [15]. The equivalent channel coefficients and the 
noise covariance can be jointly estimated at the destination 
node by an expectation-maximization algorithm–based 
approach. Recently, an algorithm can be concluded from [16] 
attempting to solve a similar problem when the relays are 
subject to individual power constraints. The algorithm mainly 
consists of a recomputation procedure and an updating 
procedure in each iterative step, but the description of the 
updating strategy is not clear, which is the key step determining 
the effectiveness and the complexity of the proposed algorithm. 
Following the algorithm from [17], let’s consider the relays 
whose recomputed scaling factors violate the corresponding 
upper bound in the recomputation step. Then, let’s come to the 
updating step. If all aforementioned relays are saturated to the 
maximum power simultaneously, as claimed in [16], then it is 
not difficult to find a counterexample to show that the 
algorithm cannot find the global optimal point in the sequel. 
However, if only one of them is saturated to the maximum 
power at the updating step, then the recomputation procedure 
may be repeated at most 2 2n   times in the worst case — 
that is, all the recomputed scaling factors invalidate the power 
constraints at every recomputation step. However, it is not 
proved in [16] that the worst case never occurs, which puts a 
limit on its implementation in practice. 

In this paper, we also study the AF relay optimization 
problem for the parallel-relay network with correlated relay 
noise. Different from the existing works [13] and [14], the 
optimal AF scheme is developed under individual relay power 
constraints. The constraint is a more practical one, which 
makes the problem more challenging. Our main contributions 
can be summarized as follows. 

We first formulate the problem as a semi-definite program 
(SDP), with the aid of several transformation tricks and the 
semi-definite relaxation (SDR) technique. So, the problem can 
be solved with only one SDP that has polynomial-time 
complexity. It is proved theoretically that the proposed 
approach can always find the global optimal solution. Then we 

theoretically prove that the achievable rate of the optimal AF 
scheme performs close to the cut set–like bound obtained in 
this paper in two special regimes when either the source power 
or the relay power constraints are sufficiently large. Finally, we 
show via both analysis and simulations that noise correlation is 
beneficial to average transmission rate — whether the relays 
know the noise covariance matrix or not. 

Notation. We use CN(μ, K) to denote an n-dimensional 
joint complex Gaussian distribution with means μ and 
covariance matrix K. Logarithms in base 2 are denoted log(). 
Superscripts *, T, and† denote the conjugate, transpose, and 
conjugate transpose, respectively. The trace and rank of a 
matrix are denoted by tr() and rank(), respectively. A 
diagonal matrix whose diagonal elements are the components 
of x is denoted by diag(x). If X is Hermitian positive semi-
definite (definite), then it is denoted by X 0 ( 0 ). 

II. System Model 

In this section, we consider the parallel AF relay network 
depicted in Fig. 1. Due to channel fading, the direct path 
between the source and destination nodes is neglected. Thus, 
source S communicates to destination D with the help of 
multiple half-duplex single-antenna relays denoted by {1, … , 
n}. The channel coefficients are independently identically 
distributed complex Gaussian random variables with zero 
mean and unit variance and remain constant during one round 
of transmission. Therefore, the magnitude of the channel 
coefficients follows the Rayleigh distribution, and the phase is 
uniformly distributed in the interval [0, 2π]. We assume that the 
full channel state information is available at a center node. 

Each relay node (k) observes local Gaussian noise, denoted 

as wk. In addition, the relays are also exposed to a set of 

common interferers 1{ , ... , }mI I due to the broadcast nature of 

wireless channels. Treating the common interference as 

Gaussian noise, the effective Gaussian noise received at the 

relays is the superposition of the local Gaussian noise and the 

common interference and is thus, correlated. We also assume 
 

 

Fig. 1. Parallel AF relay channel. 
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that the noise covariance is available at a center node. 
The data transmission takes place in two steps. During the 

first step, source S sends xS with transmit power 
2| |[ ]S Sx PE . The thk relay receives 

 , ,k S k S ky h x z                  (1) 

where the effective Gaussian noise zk at relay k is drawn 
according to 2(0, ),kCN   which is also shown in Fig. 1, and 

,

, ,| | e S kj h
S k S kh h   is drawn according to CN (0, 1) and 

denotes the channel coefficient between source S and relay k. 
During the second step, the thk relay sends 

 * ,k k kx y                    (2) 

where | | e kj
k k

    is the complex scaling factor selected 
by relay k. 

We consider individual relay power constraints in this study. 
So, the scaling factor should be chosen such that 

 2 2 2
,max| | | | | | ,k k k kx y P       E E          (3) 

where Pk, max is the maximum allowable transmit power for 
relay k.  

Then, the received signal at the destination node is 

 * *
2 1 2 , T T

D S Dy x z  h A h h A z           (4) 

where 1diag{ , , }n A  is a diagonal matrix, 

1[ , , ]T
nz zz   is the relay noise vector, zD is the destination 

noise that is drawn according to 2(0, ),CN   and 

1 ,1 ,[ , , ]T
S S nh hh   and 2 1, ,[ , , ]T

D n Dh hh   denote the 

channel vectors from the source node to the relays and from the 

relays to the destination node, respectively. We assume that 
†[ ] ,E zz K  where K 0  is the covariance matrix of the 

relay noise. Although the destination node may also receive 

common interference, we assume that z and zD are independent. 

This is because these noise processes occur at two different 

steps. Note that the same assumption can also be observed in 

[13]. 

III. Relay Optimization 

1. Optimal AF Scheme 

In this subsection we first formulate the AF-relay 
optimization problem into an SDP using several transformation 
tricks and the SDR technique. Then the optimal AF scheme 
can be efficiently computed via solving only one SDP. Finally, 
we show that the SDP-based approach can always find the 
global optimal solution of the original problem. 

From (4), it follows that the parallel AF relay network can be 
regarded as an equivalent point-to-point Gaussian channel. As  

is well known, the source node adopts the Gaussian codebook 
with Sx drawn according to CN (0, PS). The achievable rate is 
given by R = 0.5log(1+SNR), where the pre-log factor is due to 
the half-duplex assumption and SNR denotes the received 
signal-to-noise ratio (SNR) at the destination node. Note that 
log() is an increasing function. Therefore, to maximize the 
transmission rate is equivalent to maximizing the received 
SNR at the destination node. Combining with the individual 
power constraints (3), the problem is first formulated as 
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where 1[ , , ] ,T
n α   diag( ),i iH h  for i = 1, 2, and 

diag{0, ,0,1,0, ,0}k I    is a diagonal matrix with the 
kth element equal to 1. It is clear that the magnitude and phase 
of α should be designed jointly for a non-diagonal K.  

Since problem (5) is not a standard convex optimization 
problem, due to its non-concave objective function, we first 
recast it as 
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It is easy to check that the optimal solution of (6) is achieved 
when the first constraint takes equality. It follows that (5) and 
(6) are equivalent. Then, by letting v = 1/w and / ,wβ α  we 
have the following equivalent problem: 
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where 

2 1 1
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0 2 2 ,F H KH  

and  

2 2
, ,(| )|k S k S k kh P  F I  

for {1, , }.k n   Letting †X ββ  and 2| |u v  we 
then have (7) equivalent to 

 

 

 
 

 

,

2
0

,max

max tr ,

s.t.    tr 1 ,

       tr , {1, , },

        0,

        rank 1.

 
u

k k

u

P u k n

 

 



X
FX

F X

F X

X

X




        (8) 



602   Binyue Liu and Ye Yang  ETRI Journal, Volume 36, Number 4, August 2014 
http://dx.doi.org/10.4218/etrij.14.0113.0708 

The last constraint (rank(X) = 1) comes from the fact that 
† ,X ββ  which is not convex. The above problem can be 

further converted into a convex SDP problem by applying the 
idea of SDR [17] as follows: 
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        (9) 

which is a convex optimization problem and can thus be 
efficiently solved by standard interior point methods. The 
detailed discussion of the algorithms used to solve the SDP 
problem can be found in [18]. The computational complexity 
of SDP using standard interior point methods is no worse than 
O(n3), wheren is the number of relays. Generally speaking, the 
resulting optimal solution Xopt may not be of rank one. In other 
words, Xopt may not lead to an optimal solution of (8) due to 
dropping the constraint rank(X) = 1. Interestingly, we show in 
the following proposition that the rank relaxation here is tight, 
in the sense that the rank-one constraint will be automatically 
satisfied at the optimum of (9). 

Proposition 1. Suppose that problem (9) is feasible and that 

opt opt( , )uX  is the optimal solution of (9). Then it can be 
shown that rank(Xopt) = 1. 

The proof is given in Appendix 1. 
Proposition 1 shows that (9) is equivalent to (8). Applying 

rank-one decomposition to Xopt, we get opt opt opt
† .X β β  

Combining with opt opt ,v u  the optimal solution of the 
problem in (5) is obtained and denoted by opt,c opt opt/ .vα β  
Then, we derive the exact optimal AF scheme for this network. 

2. Performance Evaluation and Implementation Discussion 

In this subsection, we first propose an upper bound on the 
maximum achievable AF rate, which is used as a benchmark to 
evaluate the performance of the optimal AF scheme. It is 
shown that the optimal scheme can achieve multi-antenna gain 
in the parallel-relay network. Then we discuss the 
implementation issues of the scheme, which is also of great 
importance from a practical perspective. 

From Fig. 1, it is clear that our relay network model consists 
of a broadcast section and a multiple-access section. Hence, 
there are two natural cuts to consider first, the “broadcast cut” 
and the “multiple-access cut.” We compute a cut set–like upper 
bound with these two cuts, which is given as follows: 
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where 1[ , , ],nx xx   1[ , , ],ny yy   and the pre-factor 

0.5 is due to the half-duplex assumption. 
Let us consider the first upper bound as follows: 
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which can be viewed as the capacity of a single-input multiple-
output (SIMO) system modeled by 1 ,Sx y h z  where K is 
the noise covariance matrix at the multiple-antenna receiver. 
We call 10.5C  the maximal-ratio combination (MRC) bound 
of the parallel AF relay network. 

Then, consider the second upper bound to be 
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which can be viewed as the capacity of a multiple-input single-

output (MISO) system modeled by 2 ,T
Dy z h x  where the 

transmitter is subject to per-antenna power constraint. We call 

20.5C  the maximal-ratio transmission (MRT) bound of the 

parallel AF relay network. 
Thus combining (10), (11), and (12), it follows that the 

achievable rate of the optimal AF scheme of this network is 
upper bounded by 1 20.5min{ , }.C C  

Then, we establish the following proposition. 

Proposition 2. The upper bound 1 20.5min{ , },C C  for the 

maximum achievable AF rate of the parallel-relay network 

with correlated relay noise and individual relay power 

constraints, can be asymptotically achieved when the source 

power PS or the relay power budgets Pk, max tend to infinity. 
The proof is given in Appendix 2. 
Finally, we discuss the implementation issues of the scheme. 

It is clear that the design of the optimal AF scheme for such a 
network requires side information, including the instantaneous 
channel coefficients and relay noise covariance. To the best of 
our knowledge, the expectation-maximization algorithm–based 
approach proposed in [15] is the first technique that can jointly 
estimate the channel coefficient and noise covariance. 
Furthermore, as shown in [15], the performance of the 
estimator is nearly optimal. Thus, by applying such a technique 
in our system model, the destination node is regarded as the 
center node that develops the optimal AF scheme based on the 
estimated side information and that then distributes the optimal 
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scaling factors to the relays via a backward channel before the 
transmission. The network overhead for distributing the 
optimal schemes from the destination node to the relays 
increases linearly as the number of relays increases. 
Nevertheless, learning noise covariance still results in network 
overhead. A natural question is whether it is worth doing so. To 
answer this, we compare the following scenarios. 

Scenario A. The relay noise is uncorrelated. Therefore, the 
relays adopt the optimal AF scheme αopt, i obtained in [6], and 
the received SNR at the destination node is denoted by SNR4 = 
SNR0(αopt, i), where the definition of SNR0(α) is given in the 
proof of Proposition 3 in the sequel. 

Scenario B. The relay noise is correlated but relays are 
unaware of the correlation. In such a scenario, the relays still 
adopt αopt, i, and the received SNR at the destination node is 
denoted by SNRB = SNR(αopt, i). 

Scenario C. The relay noise is correlated and relays are 
aware of the correlation. Therefore, the relays adopt the optimal 
AF scheme αopt, c obtained in subsection III. 1. The received 
SNR at the destination node is denoted by SNRC = SNR(αopt, c).  

We conclude the results in the following proposition. 
Proposition 3. For any source power PS and relay power 

constraints Pk, max, {1, ... , },k n  the performance of the AF 
relaying scheme under correlated relay noise outperforms that 
under independent relay noise in terms of average rate over all 
the channel realizations; that is, 

     ,A B CR R R E E E  

where  0.5log 1 ,x xR SNR   { , , }x A B C . 
The proof of Proposition 3 is given in Appendix 3.  
Proposition 3 first shows that learning noise covariance may 

improve the ergodic capacity of the network. In addition, it 
shows that the optimal AF scheme for the independent noise 
case can be viewed as a suboptimal scheme and that it has an 
even better average transmission rate when the relay noise is 
correlated. Regardless of the noise correlation, the suboptimal 
scheme can be implemented in a partially distributed manner, 
as shown in [6]. 

IV. Numerical Results 

Example A. We first give a simple example to show that the 
algorithm concluded from [16] cannot always find the global 
optimal solution of (5). For simplicity, let’s only consider a 
three-relay network with independent Gaussian noise. 

The relay and source power constraints are given as 
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It is clear both recomputed values {3}
1  and {2}

2  violate 
the corresponding upper bound. Then, the relay set {1, 2} 
should be added to the original set {3}. Then, we have 

3
1,max 2,max 3o , xpt ma( ) ( , , ) 2.160.SNR SNR    α  

Then, by Proposition 1 and Theorem 1 proposed in [16], the 
optimal AF scheme should be 

1 1,max 2 2,max 3 3,max0.707, 1.886, 1.061,          

and the corresponding optimal SNR value should be 2.160. 
However, the optimal solution obtained by our SDP-based 
approach and the approach proposed in [6] is 

1 2 2,max 30.707, 1.485 , 1.061.        

The corresponding optimal SNR value is SNRopt = 2.191. Thus, 
it shows that the algorithm in [16] cannot always find the 
global optimal point. 

On the other hand, if considering a more sophisticated 
updating strategy — as in the second one indicated in the 
introduction section — then from the above example, we have 
already shown the existence of the worst case; that is, after the 
updating step, all the recomputed scaling factors exceed the 
corresponding upper bound. Thus in this case, the 
computational complexity is exponential in n. Thus, it will 
significantly limit the use of the algorithm in practice. 
Nevertheless, our algorithm is based on a convex SDP that has 
polynomial-time complexity. 

Example B. We illustrate another example to show the 
theoretical results obtained in Propositions 2 and 3. To make 
the numerical results more reliable, the average achievable 
rates in all the following examples are averaged over 5,000 
randomly generated samples of relay noise covariance matrices 
and channel vectors. 

In the first case, we assume that the relay nodes have a fixed 
equal power constraint Pk, max = P0 = 10 dBW. Then, the 
average achievable rate Rx as a function of PS, where 

{ , , },x A B C  is shown in Figs. 2 and 3 for n = 5 and n = 10, 
respectively. Clearly, with an increase in source power, the 
network performs as a MISO system with multiple relays 
regarded as the transmitter antennas of the source node. In this 
case, all three scenarios considered in Proposition 3 share the 
same MRT bound due to the neglecting of the relay noise. In 
both figures, [ ]CRE  outperforms [ ]BRE  and [ ],CRE  
when PS is small. Comparing the results in Figs. 2 and 3, we 
can conclude that the larger the number of relays, the more 
benefits can be obtained by learning noise covariance. 
However, it is shown that the average achievable rates under 
different scenarios are almost the same when PS is greater than 
25 dBW. It is because the received noise power is negligible  

 

Fig. 2. Average achievable rate when n = 5. 

0 5 10 15 20 25 30 35 40

PS (dBW) 

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

A
ve

ra
ge

 a
ch

ie
va

bl
e 

ra
te

 (
bi

ts
/c

ha
nn

el
 u

se
) 

E[RA] 
E[RB] 
E[RC] 
MRT bound for scenarios A, B, and C.

 

 

 

Fig. 3. Average achievable rate when n = 10. 
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compared with the signal power at the relays (when the 
transmit power of S is sufficiently large) that the correlation of 
relay noise is less pronounced. Figures 2 and 3 also show that 
relay noise correlation always benefits AF performance 
regardless of whether the relays know of the noise covariance 
matrix. 

In the second case, we assume that the source node transmits 
with power PS = 10 dBW and each relay node has an equal 
power constraint Pk, max = P0. Then, the average achievable rate 
Px as a function of P0, where { , , },x A B C  is shown in  
Figs. 4 and 5 for n = 5 and n = 10, respectively. It is observed 
that the performance of the average achievable rate can be 
significantly improved by learning noise covariance, especially 
when P0 is greater than 10 dBW. It is also shown that the larger 
the number of relays, the more benefits can be obtained by 
learning noise correlation. The network performs as a SIMO  
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Fig. 4. Average achievable rate when n = 5. 
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Fig. 5. Average achievable rate when n = 10. 
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system with the multiple relays regarded as the receiver 
antennas of the destination node when the relay power tends to 
infinity. It is shown in both figures that the optimal AF scheme 
can asymptotically achieve the MRC bound. It is also shown 
that relay noise correlation always benefits AF performance 
regardless of whether the relays know of the noise covariance 
matrix. 

V. Conclusion 

We have studied the optimal AF relaying scheme for a 
parallel-relay channel under individual relay power constraints, 
where the relay noise is correlated. The performance of the 
maximum AF achievable rate is estimated. It is shown that 
noise correlation is beneficial to performance in terms of 
average transmission rate — even if the relays are unaware of 

the correlation. The AF relay optimization problem is still open 
for a more general case when the destination noise is also 
correlated to the relay noise. This is a potential objective of our 
future work. Moreover, to develop an optimal AF scheme with 
channel coefficient or noise covariance estimation errors, or 
both, is also a main objective of our future work. 

Appendices 

Proof of Proposition 1. 

It is readily verified that (9) satisfies Slater’s constraint 
qualification, which implies that strong duality holds and that 
the primal and dual optimal solutions must satisfy the KKT 
conditions [19]. Let 0,opt ,  ,opt ,k  for {1, , },k n   and 
Yopt be the optimal dual variables associated with the 
constraints in (9). A part of the KKT conditions relevant to the 
proof are listed below 

 opt ,opt0

n

k kk



  Y F F ,          (13) 

 opt opt Y X 0 ,                 (14) 

 opt opt 0,opt ,opt0, 0, 0, 0k  X Y  .        (15) 

Note that 0,opt  must be positive in (15); otherwise, one can 
achieve a larger objective value by scaling up Xopt, since the 
first constraint of (9) is inactive. 

Then, by substituting (13) into (14) we have 

 opt 0,opt 0 ,opt opt1
( )

n

k kk
 


 FX F F X .        (16) 

According to the definitions of Fk, for {0, , },k n   we 

have 0,opt 0 ,opt1

n
k kk F F 0 . Thus, it follows that 

 
 

   
opt 0,opt 0 ,opt opt1

opt

rank rank(( ) )

rank rank 1.

n

k kk
 


 

  

X F F X

FX F
    (17) 

Since opt X 0  in practice, it is sufficient to show that 
rank(Xopt) = 1.                                    □ 

Proof of Proposition 2. 

Although we cannot derive a closed-form solution of the 
optimal AF scheme as in [13], we propose an alternative way 
to show that the upper bound on the maximum AF achievable 
rate can be asymptotically achieved. To this end, we consider 
two suboptimal schemes given as follows. 

Suboptimal scheme 1 is proposed as follows to deal with the 
correlated relay noise: 

   1

sub1 0 2 2 2 1
† ,c


α H KH H h            (18) 

where we denote   1
† 1

1 2 2 2[ , , ] ,T
n 


 α H KH H h  
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,max
,max 2 2

,| |
k

k
S S k k

P

P h






 for 1, , ,k n   and 

,max
0 min{ , 1, , }.

| |
k

k

c k n



    

Suboptimal scheme 2 is proposed as follows to achieve a co-
phasing transmission of the relay signals: 

 21

sub2 1,max 2,max ,maxe ,e , , e ,n
Tj h j h j h

n       α     (19) 

where , , ,k S k k Dh h h  for 1, , .k n   
We conclude that destination noise can be neglected in the 

case of the suboptimal scheme sub1,α  as relays have 
sufficiently large power constraints, that is, in (20) 

,max ,kP   1, , .k n   

 
,max

2

sub1 2 2 su
† †

b11,2, ,

lim 0.
kP

k n







α H KH α



           (20) 

Then, it is easy to check that 

   

 

,max ,max

,max

opt sub1

1,2, ..., 1,2, ... ,

†
sub1 2 1 1 2 sub1

,max †
su

† †

1 †
b1 2 2 sub11,2, ... ,

1
1 1
†

lim lim

li { }m

,

k k

k

P P
k n k n

S
k

P
k n

S

SNR SNR

P
P

P

f

 
 












α α

α H h h H α

α H KH α

h K h

   (21) 

where the last equality follows from the fact that 

 ,max †
sub1 2 2 s

12

1 †
ub1

} 1 1{ ,kf P



 

   
 α H KH α

 

as ,max ,kP   for 1, , .k n   
It follows that the MRC bound can be asymptotically 

achieved when the relay power constraints tend to infinity. 
With the suboptimal scheme sub2 ,α  we conclude that relay 

noise can be neglected as source power ,SP   because 

 sub2 2 2 sub
†

2
2

†

lim 0.
SP 


α H KH α

         (22) 

Therefore, we have 

  

opt sub2

†
sub2 2 1 1 2 sub2

2

2
, ,max

2

2
1

† †

lim ( ) lim ( )

l

,

im

1
( | | )

S S

S

P P

S

P

n

k D k

S

k

f

SNR SNR

P
P

h P





 









 

α α

α H h h H α
      (23) 

where the last equality follows from the fact that 

 
1††

sub
2

2 2 2 s b
2

u 21 1,SPf



 

   
 

α H KH α
 

as SP  . 
It follows that the MRT bound can be asymptotically 

achieved when the transmit power of the source node tends to 

infinity. 
Then, we complete the proof.                       □ 

Proof of Proposition 3. 

For fairness in comparison, we assume that the marginal 
distribution of the relay noise is the same for both correlated 
and uncorrelated scenarios; that is, if K is the noise covariance 
matrix of correlated relay noise, then K I  is the noise 
covariance matrix of the uncorrelated counterpart, where    
denotes the Hadamard product. As a result, in the case of 
uncorrelated relay noise, the received SNR at the destination is 
given by 

   2 1 1 2
0 2

2

† † †

† †
2

.
( )

SP
SNR





α H h h H α

α
α H KH I α

         (24) 

To maximize the received SNR (24) at the destination, it is 

better to choose scaling factors at relays such that the copies of 

the source signal from different relays add up in phase at the 

destination node. Therefore, without loss of generality, the 

phase of the scaling factor at relay k can be taken as 

, , .S k k Dh h   It should be noted that selection of the phase 

of the scaling factor does not affect the received noise power at 

the destination node. Then, the system reduces to a real-valued 

one with all channel coefficients being positive. We denote the 

beamforming vector to be 0 0,1 0,[ , , ]T
n α   in the 

optimal AF scheme for the real system. Then, the optimal 

scaling factor is given by 

 ,1 1, , ,( ) ( )
opt,i 0diag(e , ,e .)S D S n n Dj h h j h h   α α     (25) 

By substituting (25) into (24), we have 

 0 2 1 2 1 0
2

0 2 2 0
†

| || |
,

( )

T T
S

A T

P
SNR





α H h H h α

α H KH I α
       (26) 

where 2 1 ,1 1, , ,| | [| | | ] ., , | T
S D S n n Dh h h hH h   Note that 0α  

is independent of the phase of the channel coefficient as is 
SNRA. Next, we consider BSNR . 

 opt,i 2 1 1 2 opt,i

2
opt

† † †

† †
,i 2 2 opt,i

,S A
B

P aSNR
SNR

a b
 


α H h h H α

α H KH α
     (27) 

where 2
0 2 2

†
0( )Ta  α H KH I α  and 

 
 

 ,

† †
opt,i 2 2 2 2 opt,i

0, , , 0,
1

†

e | | , | | ,i m

n n
j

i i D m D m
i m i

h i m h

b

  
 

 

 

α H KH H KH I α

K



    (28) 

where , , ,i m S m S ih h    . As a result, b is a function of the 

phase of the channel coefficient. 
Finally, from (27) we have 



ETRI Journal, Volume 36, Number 4, August 2014 Binyue Liu and Ye Yang   607 
http://dx.doi.org/10.4218/etrij.14.0113.0708 

0.5log 1 .A
B

aSNR
R

a b
    

 

It can be shown that the second derivative of RB with respect to 
b is  

  
   2 2

21
,

2 ln 2

A A

A

aSNR a b aSNR

a b aSNR a b

 

  
 

which is always positive. Therefore, RB is convex with respect 
to b. Then, we have 

 

 

   

m p

( )

m

p

( )

0.5log 1 | |

0.5log 1

 0.5log 1 ,

A
B

a
A

b

A A

aSNR
R h

a b

aSNR

a b h

SNR R

       
  
   
       

    

E E E

E
E

E E

     (29) 

where [ ]E  is the expectation over all channel coefficients, 

m[ ]E  is the expectation over all channel magnitude, and 

p[ ]| |hE  is the conditional expectation over all channel phase 
given the channel magnitude; (a) follows from Jensen’s 
inequality, and (b) follows from the fact that 

,

p |[e 0]|i mj h E  by the assumption that all channel phase is 
independent and uniformly distributed over the interval 
[0,2π] . 

Then, we complete the proof.                       □ 
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