• Title/Summary/Keyword: Relaxation Dispersion

Search Result 44, Processing Time 0.038 seconds

A New Lagrangian Stochastic Model for Prediction of Particle Dispersion in Turbulent Boundary Layer Flow (경계층 유동에서 입자확산의 예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1851-1856
    • /
    • 2003
  • A new Lagrangian stochastic dispersion model is developed by combining the GLM(generalized Langevin model) and the elliptic relaxation method. Under the physically plausible assumptions a simple analytical solution of elliptic relaxation is obtained. To compare the performance of our model with other model, the statistics of particle velocity as well as concentration are investigated. Numerical simulation results show good agreement with available experimental data.

  • PDF

Angular Dispersion-type Nonscanning Fabry-Perot Interferometer Applied to Ethanol-water Mixture

  • Ko, Jae-Hyeon;Kojima, Seiji
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.261-266
    • /
    • 2009
  • The angular dispersion-type non-scanning Fabry-Perot was applied to an ethanol-water mixture in order to investigate its acoustic properties such as the sound velocity and the absorption coefficient. The scattered light from the mixture was analyzed by using the charge-coupled-device area detector, which made the measurement time much shorter than that obtained by using the conventional scanning tandem multi-pass Fabry-Perot interferometer. The sound velocity showed a deviation from ultrasonic sound velocities at low temperatures accompanied by the increase in the absorption coefficient, indicating acoustic dispersion due to the coupling between the acoustic waves and some relaxation process. Based on a simplified viscoelastic theory, the temperature dependence of the relaxation time was obtained. The addition of water molecules to ethanol reduced the relaxation time, consistent with dielectric measurements. The present study showed that the angular dispersion-type Fabry-Perot interferometer combined with an area detector could be a very powerful tool in the real-time monitoring of the acoustic properties of condensed matter.

Sound Dispersion in Simple Fluids

  • Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.171-182
    • /
    • 1974
  • Sound dispersion in simple fluids is analyzed applying a generalized hydrodynamic ethod for time correlation functions. The effects of shear relaxation on the sound dispersion are examined for liquid argon and a dilute hard-sphere gas. In the case of liquid argon, the dispersion predicted by the theory over quite a wide range of wavenumbers exhibits the combined effects of shear relaxation and structural correlations. The results for a dilute gas indicate that that the inclusion of shear relaxation gives a qualitative improvement of Wavier-Stokes theory.

  • PDF

dispersion and relaxation of Epoxy/Layered Nanocomposite (에폭시/나노층상복합재료의 유전분산과 완화)

  • Ahn, Joon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Epoxy/mica has been used as the material of high-voltage rotator stator winding due to its high insulation performance, mechanical strength, and thermal stability. In recent years, however, it shows frequent changes in the load of generators and frequent automatic stops due to the significant increase in peak loads from the increase in the applied load of power facilities according to the introduction of advanced and high-technology equipments. Thus, it is necessary to develop new materials that highly develop the conventional insulation materials. Nanotechnology introduced in the present time has become an alternative plan that overcomes such technical limitations. In addition, the nano-scaled intercalation composite has been known as the material that represent excellent electrical, mechanical, and thermal characteristics compared to the conventional materials. This study investigated the dielectric dispersion and relaxation characteristics of the nanocomposite, which was fabricated by mixing epoxy matrix with nano-scaled intercalation mica and clay, according to changes in frequencies and temperatures.

  • PDF

Impact of Phonon Dispersion on Thermal Conductivity Model (포논 분산이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1165-1173
    • /
    • 2003
  • The effects of (1) phonon dispersion on thermal conductivity model and (2) differentiation of group velocity and phase velocity are examined for germanium. The results show drastic change of thermal conductivity regardless of the same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon on the thermal conductivity at high temperatures is reassessed by considering more rigorous dispersion model. Holland model, which is commonly used for modeling thermal conductivity, underestimates the scattering rate for TA phonon at high frequency. This leads the conclusion that TA is dominant heat transfer mode at high temperatures. But according to the rigorous consideration of phonon dispersion, the reduction of thermal conductivity is much larger than the estimation of Holland model, thus the TA at high frequency is expected to be no more dominant heat transfer mode. Another heat transfer mechanism may exist at high temperatures. Two possible explanations we the roles of (1) Umklapp scattering of LA phonon at high frequency and (2) optical phonon.

Impact of Phonon Dispersion on Thermal Conductivity Model (Phonon Dispersion이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1627-1632
    • /
    • 2003
  • The effect of (1) phonon dispersion in thermal conductivity model and (2) the differentiation of group velocity and phase velocity for Ge is examined. The results show drastic change of thermal conductivity regardless of using same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon is changed by considering more rigorous dispersion model. Holland model underestimates the scattering rate for high frequency TA, so misleading conclusion, i.e. TA is dominant heat transfer mode at high temperature. But the actual reduction of thermal conductivity is much larger than the estimation by Holland model and high frequency TA is no more dominant heat transfer mode. Another heat transfer mechanism may exist for high temperature. Two possible explanations are (1) high frequency LA by Umklapp scattering and (2) optical phonon.

  • PDF

FDTD Simulation of Photonic-Crystal Lasers and Their Relaxation Oscillation

  • Song, G. Hugh;Kim, Soan;Hwang, Kyung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.87-95
    • /
    • 2002
  • We have developed an finite-difference time-domain program that can analyze photonic devices with gain and/or dispersion. As an example, a two-dimensional photonic-crystal laser is simulated. The simulation can show the relaxation oscillation behavior at extremely high current injection.

A Study of Ferroelectric Properties of the Oscillator Model of PZT-22

  • Ukaegbu, Ikechi Augustine;Borodulin, Vladimir Nikolaevich
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.132-135
    • /
    • 2011
  • In this letter, we study the contemporary technologies for making ferroelectric films and the possibility of using the oscillator model of PZT-22 to analyze its ferroelectric properties. The material showed permittivity dispersion at 65 KHz and 88.5 KHz. We obtained relative attenuation ${\gamma}$, relaxation time ${\tau}$, and ${\varepsilon}_{max}$ of the material as 0.0008319, 0.5 s, and 603.438, respectively.

Dielectric Relaxation in Electrooptical Switching of Nematics

  • Lavrentovich, Oleg D.;Wonderly, Hugh;Gu, Mingxia;Shiyanovskii, Sergei V.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1283-1285
    • /
    • 2008
  • We describe how the phenomenon of dielectric dispersion in nematic liquid crystals influences the director dynamics and thus the switching speed of nematic-based displays.

  • PDF

A Study on the Mathematical Equivalence and $\varepsilon$-Relaxation of Auction Algorithm for PCB Design (PCB 설계를 위한 Auction 알고리즘의 수학적 등가와 $\varepsilon$-이완법에 관한 연구)

  • 우경환;이용희;임태영;이천희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.213-216
    • /
    • 2000
  • Minimum-cost linear network flow problems could be transformed with equal to assignment problems. Traditional method to solve the linear network flow problems are improved source-cost by transform the simple cycle flow. Auction algorithm could be applied to same element using the initial target price and dispersion calculation. Also, each elements are obtained by $\varepsilon$-relaxation methods. In this paper we proposed; 1)minimum-cost flow problem, 2)minimum-cost flow problem by the mathematical equivalent and 3) extraction $\varepsilon$-relaxation & expand transfer problem with minimum-cost flow. It can be applicant to PCB design by above mentioned.

  • PDF