• Title/Summary/Keyword: Relativistic dynamics

Search Result 21, Processing Time 0.029 seconds

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF

CHARACTERISTIC SOLAR WIND DYNAMICS ASSOCIATED WITH GEOSYNCHRONOUS RELATIVISTIC ELECTRON EVENTS

  • Kim, Hee-Jeong;Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • We have investigated characteristic solar wind dynamics associated with relativistic electron events at geosynchronous orbit. Most of the events for April, 1999 through December, 2002 are found to be accompanied by a prolonged solar quiet period which is characterized as low solar wind density, weak interplanetary magnetic field (IMF), and fast alfvenic fluctuations in IMF $B_z$. In a typical relativistic event, electron fluxes begin to increase by orders of magnitude when solar wind parameters drop to low values (e.g., $n_{sw}∼5 cm^{-3}$ and |$B_{IMF}$∼5 nT) after sharp peaks. Then the elevated electron fluxes stay at the high level during the solar quiet period. This observation may suggest the following scenario for the occurrence of a geosynchronous relativistic event: (ⅰ) Quiet solar winds can yield a stable and more dipole-like magnetospheric configurations in which the geosynchronous orbit locates well inside the trapping boundary of the energetic electrons. (ⅱ) If a large population of MeV electrons are generated (by whatever acceleration process(es)) in the inner magnetosphere, they can be trapped and effectively accumulated to a high intensity. (ⅲ) The high electron flux can persist for a number of days in the geosynchronous region as long as the solar wind dynamics stays quiet. Therefore the scenario indicates that the occurrence of a relativistic event would be a result of a delicate balance between the effects of electron acceleration and loss. In addition, the sensitive dependence of a relativistic event on the solar wind conditions makes the prediction of solar wind variability as important as understanding of electron acceleration processes in the forecast of a relativistic event.

Relativistic Radiation Hydrodynamics of Spherical Accretion

  • PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.305-307
    • /
    • 2001
  • Radiation hydrodynamics in high. velocity or high optical-depth flow should be treated under rigorous relativistic formalism. Relativistic radiation hydrodynamic moment equations are summarized, and its application to the near-critical accretion onto neutron star is discussed. The relativistic effects can dominate the dynamics of the flow even when the gravity is weak and the velocity is small. First order equations fail to describe the intricate relativistic effects correctly.

  • PDF

Morphology and Dynamical Properties of Ultra-Relativistic Jets

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2020
  • We study the structures and dynamics of flows generated by ultra-relativistic jets on kpc scales through three-dimensional relativistic hydrodynamics (RHD) simulations. We employ a newly developed RHD code, equipped with the WENO-Z reconstruction, the SSPRK time discretization, and an equation of state that closely approximates the single-component perfect gas in relativistic regime. Exploring a set of models with various parameters, we confirm that the well-known Fanaroff-Riley dichotomy is primarily determined by the jet power, whereas the morphology of simulated jets also depends on the secondary parameters such as the momentum injection rate and the ratio of the jet to background pressure. Utilizing high resolution capabilities of the newly developed code, we examine in detail the dynamical properties of complex flows in different parts of jet-produced structures, and present the statistics of nonlinear dynamics such as shock, shear, and turbulence.

  • PDF

A New Code for Relativistic Hydrodynamics

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2020
  • In an attempt to investigate the nonlinear dynamics such as shock, shear, and turbulence associated with ultra-relativistic jets, we develop a new relativistic hydrodynamics (RHD) code based on the weighted essentially non-oscillatory (WENO) scheme. It is a 5th-order accurate, finite-difference scheme, which has been widely used for solving hyperbolic systems of conservation equations. The code is parallelized with MPI and OpenMP. Through an extensive set of tests, the accuracy and efficiency of different WENO reconstructions, and different time discretizations are assessed. Different implementations of the equation of state (EOS) for relativistic fluid are incorporated, As the fiducial setup for simulations of ultra-relativistic jets, we adopt the EOS in Ryu et al. (2006) to treat arbitrary adiabatic index of relativistic fluid, the WENO-Z reconstructions to minimize numerical dissipation without loss of stability, and the strong stability preserving Runge-Kutta (SSPRK) method to achieve stable time stepping with large CFL numbers. In addition, the code includes a high-order flux averaging along the transverse directions for multi-dimensional problems, and the modified eigenvalues for the acoustic modes to effectively control the carbuncle instability. We find that the new code performs satisfactorily simulations of ultra-relativistic jets.

  • PDF

Classical Relativistic Extension of Kanai's Frictional Lagrangian

  • Dubey, Ritesh Kumar;Singh, B.K.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1840-1844
    • /
    • 2018
  • Working in an arbitrary Lorentz frame, we address the question of formulating the covariant variational principle for classical, single-particle, dissipative, relativistic mechanics. First, within a Minkowskian geometry, the basic properties of the proper time ${\tau}$ and the covariant velocity $u_{\mu}$ are recapitulated. Next, using a scalar function ${\psi}(x)$ and its negative derivatives ${\varphi}_{\mu}{^{\prime}}s$, we construct a covariant Lagrangian ${\Lambda}$ that generalizes the famous Bateman-Caldirola-Kanai Lagrangian of nonrelativistic frictional mechanics. Finally, we propose a deterministic model for ${\psi}$ (involving the drag coefficient A) whose explicit solution leads to relativistic damped Rayleigh motion in the rest frame of the medium.

Relativistic Hydrodynamics and Quasiperiodic Oscillations

  • MATHEWS GRANT J.;FRAGILE P. CHRIS;WILSON JANES R.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.265-269
    • /
    • 2001
  • We present preliminary numerical simulations of tilted-disk accretion around a rotating black hole. Our goal is to explore whether hydrodynamic instabilities near the Bardeen-Petterson radius could be responsible for generating moderate-frequency quasi-periodic oscillations in X-ray binaries. We review the relevant general relativistic hydrodynamic equations, and discuss preliminary results on the structure and dynamics of a thin, Keplerian disk.

  • PDF

MILD SOLUTIONS FOR THE RELATIVISTIC VLASOV-KLEIN-GORDON SYSTEM

  • Xiao, Meixia;Zhang, Xianwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1447-1465
    • /
    • 2019
  • In this paper, the relativistic Vlasov-Klein-Gordon system in one dimension is investigated. This non-linear dynamics system consists of a transport equation for the distribution function combined with Klein-Gordon equation. Without any assumption of continuity or compact support of any initial particle density $f_0$, we prove the existence and uniqueness of the mild solution via the iteration method.

RELATIVISTIC INTERPLAY BETWEEN ADAPTIVE MOVEMENT AND MOBILITY ON BIODIVERSITY IN THE ROCK-PAPER-SCISSORS GAME

  • PARK, JUNPYO;JANG, BONGSOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.351-362
    • /
    • 2020
  • Adaptive behaviors are one of ubiquitous features in evolutionary dynamics of populations, and certain adaptive behaviors can be witnessed by individuals' movements which are generally affected by local environments. In this paper, by revisiting the previous work, we investigate the sensitivity of species coexistence in the system of cyclic competition where species movement can be affected by local environments. By measuring the extinction probability through Monte-Carlo simulations, we find the relativistic effect of weights of local fitness and exchange rate for adaptive movement on species biodiversity which promotes species coexistence as the relativistic effect is intensified. In addition, by means of basins of initial conditions, we also found that adaptive movement can also affect species biodiversity with respect to the choice of initial conditions. The strong adaptive movement can eventually lead the coexistence as a globally stable state in the spatially extended system regardless of mobility.

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.