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ABSTRACT

Radiation hydrodynamics in high velocity or high optical-depth flow should be treated under rigorous relativistic
formalism. Relativistic radiation hydrodynamic moment equations are summarized, and its application to the near-
critical accretion onto neutron star is discussed. The relativistic effects can dominate the dynamics of the low even
when the gravity is weak and the velocity is small. First order equations fail to describe the intricate relativistic

effects correctly.
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I. Introduction

The major components of accretion system are mat-
ter and radiation, and they are bound to interact one
way or another. In freely falling spherical accretion flow
onto neutron stars and black holes, this interaction be-
comes important when the mass accretion rate is above.
the Eddington accretion rate, defined as
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where Lg is the Eddington luminosity and Mg the
mass of the Sun. Below this mass accretion rate, mat-
ters simply cools and photons freely stream out. Above
it, the electron scattering optical depth becomes larger

“than 1, and outgoing photons interact with matter.
Momentum and energy are exchanged between matter
and radiation via scattering and absorption. Momen-
tum transfer from radiation to matter produces radi-
ation force, which becomes comparable to the gravity
when the luminosity approaches Lg. Dynamics of ac-
cretion flow can also be altered by the energy transfer.
Hard photons produced in the inner part of the accre-
tion flow can heat the outer part of the flow via scatter-
ing or absorption, changing the entropy of the accretion
flow. In this supercritical accretion, M > Mg, photons
have to diffuse out of the incoming flow thorough scat-
tering or absorption. Whenthe optical depth, 7, is high
and infall velocity, v,, is large, the diffusion velocity of
photons, vgig ~ ¢/7, can become lower than v,. When
this condition is met, most photons advect with the
flow and radiation is trapped. Such flow requires care-
ful treatment because of relativistic radiative transfer
and hydrodynamic effects. .

II. Relativstic Radiation Hydrodynamics Equa-
tions '

Thomas (1930) first laid out the fully special rela-
tivistic theory of radiative transfer. Thirty years later,
Lindquist (1960) extended the theory to the curved

spacetime, but limited to the spherically symmeric case
and diffusion regime. General radiation moment equa-
tions are derived-by Thorne (1981) in projected sym-
metric trace-free tensor formalism. This formalism
exclusively uses the radiation quantities in comoving
frame, a frame comoving with the matter. Park (1993)
rederived the relativistic radiation moment equations
in mixed-frame formalism for Schwarzschild spacetime.
Radiation quantities and their derivatives are expressed
in fixed coordinate while the interaction between radia-
tion and matter are expressed in comoving frame. The
equations are simpler to understand and the interaction
terms are intuitively described. Here, I summarize the
equations and definitions suitable for spherical accre-
tion onto Schwarzshild black holes. This mixed-frame
radiation moment equations can be easily extended to
other spacetime and non-spherical accretion. But in
such non-symmetric cases, closure relations among ra-
diation moments are not well-known and application
to real accretion is not straightforward. Therefore, I
limit the following discussion only to the spherically
symmetric accretion in Schwarzschild geometry
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I choose ¢ =1.
In relativistic framework, radiation quantities in
fixed frame and in comoving frame are defined in each

tetrad. Energy density is defined as

E=2r // ILdvdy, E., =2n // 1, dvedic,,

(3)
where [ is the specific intensity, 4 and p., are the di-
rection cosines between the photon trajectory and the
radial direction in each tetrad, and v and v,, the pho-
ton frequency in each tetrad. The radiation flux is

F =27 // Lopdvdy, F,, = 27 // L. teo@Veodiics,

(4)
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and the radiation pressure

E =27 // I,,,uzdudu, B, =2m // I,,w,uioducoduco.

(5)
These quantities constitute the tetrad components of
the radiation stress tensor. Applying the Lorentz trans-
formation between the tetrads components in fixed
frame and comoving frame yields the transformaton
law between comoving frame radiation moments and
fixed frame radiation moments:
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where v is the proper velocity of the flow, the velocity
measured by the observer fixed to the coordinate sys-
tem. For the Schwarzschild metric with dimensionless
mass m = GM/c?, v is related to the radial component
of the four-velocity U™ as '

v=—, (9)

where
yE[1+(UT)2—2m/r]l/2. (10)

Now, the transfer of momentum and energy from the
radiation to the matter is easily expressed by comoving
radiation moments. The particle number conservation
is
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where n is the proper number density of particles con-
served, e.g., baryon. The relativistic Euler equation is
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where P, is the gas pressure, wy, = P, + ¢4 the gas
enthalpy, e, the gas internal energy including the rest
mass energy, and X, is the linear opacity measured in
comoving frame. It is evident from this equation that
the comoving flux is directly related to the accelera-
tion, or rather deceleration, of the matter. The energy
equation is
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where I'., and A, are the heating and cooling functions
per unit proper volume in comoving frame.
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For spherically symmetric radiation field, two radia-
tion moment equations are derived for three moments.
This is general characteristics of any radiative transfer
equation reduced in moment form: radiation moments
are always under-determined and additional constraint
like closure relation should be provided. The energy
equation for the radiation field is
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1—2m/r~8_t~+ 1—2m/rr?dr [r (1—T)F}

= _ﬁ;[rco — Ao + 'UXCOFCO]‘ (14)

We can see that the gravitational redshift-corrected lu-
minosity 47r2(1 — 2m/r)F is conserved in the absence
of interaction with matter. The generalized form of the
momentum equation for the radiation field is
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Although only terms of up to v! appear in the equa-
tions, they are relativistically exact, i.e., correct up to
arbitrary order in v. The above two equations (14) and
(15) are usually supplemented by variable Eddington-
factor relation for closure.

III. Application to Near Critical Accretion onto
Neutron Stars

As a concrete example, I apply the above relativis-
tic radiation hydrodynamics equations to the steady-
state, near critical accretion onto neutron star (Park &
Miller 1991). The spacetime around the neutron star
is described by the Schwarzshild metric and the gas is
assumed not to contain any pressure or internal energy.
When the luminosity is some fraction of the Eddington
luminosity

L
=1-— 1
e=1-7-, (16)
the gas infall roughly follows the modified free-fall
2 1/2
Umff = (6—?) . (17)

However, as € approaches 0, the slower velocity makes
the optical depth much higher than 1 and the rela-
tivistic radiation transport effects become important.
Even in the Newtonian calculation with corrections up
to (v/e)!, the flow velocity deviates significantly from
Vmff < r~1/2 close to the neutron star surface as shown
in Fig. 1 (dotted curve) for € = 0.2 accretion (Miller
1990). The correct general relativistic treatment shows
even pronounced decrease of velocity (solid curve in
Fig. 1) and increase of radiation field. The dynam-
ics of the flow is determined by the relativistic Euler
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Fig. 1.— The flow velocity measured by the fixed ob-
server for spherical accretion onto neutron star with ¢ =
1—L/Lg = 0.2. The radius is in units of neutron star radius
7., which is assumed to be 10 km. Dotted curve is from the
Newtonian calculation of Miller (1990) and the solid curve
is the correct relativistic solution of Park & Miller (1991).

equation (12). If we define a critical flux

1 Lg

Fcr = (18)

y 4nr?
as an extension of Eddington flux, the flow decelerates
whenever the comoving flux is larger

Feo > For. (19)

The factor y (Eq. 10) is a pure relativistic factor.
The gravitational redshift factor between the luminos-
ity measured at infinity and that measured locally at r
is incorporated in F, through egs. (7) and (14). The
ratio F,,/F., is shown in Fig. 2, showing that this
ratio becomes larger than 1 around r ~ 3.5r, which
corresponds to the start of deceleration in Fig. 1.

In the extreme case when the luminosity is indepen-
dent of the accretion flow, it can be shown that the
steady-state accretion flow does not exist when the lu-
minosity from the central source is larger than 76%
(measured at infinity) of the Eddington luminosity for
spherical accretion 1.4 Mg with 10 km radius neutron
star. This limit value is significantly smaller than the
classical Eddington limit.

As shown in this specific example, we conclude that
the rigorous relativistic radiation hydrodynamics equa-
tions should be used whenever v — ¢, 2m/r — 1, or
Tv — c¢. These situations most likely to arise in the ac-
cretion onto neutron stars or black holes, and especially
even at large radius for near-critical or super-critical
accretion.
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Fig. 2.— The comoving flux, flux measured by the ob-
server comoving with the flow, in units of the critical flux
defined in the main text. In Newtonian treatment the ratio
is always equal to 1 — e = 0.8 in this case.
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