• 제목/요약/키워드: Relative vertical velocity

검색결과 54건 처리시간 0.021초

상대수직속도를 고려한 파랑중 선박의 슬래밍 충격하중 및 응답 계산 (Numerical Prediction of Slamming Impact Loads and Response on a Ship in Waves Considering Relative Vertical Velocity)

  • 최문관;박인규;구원철
    • 대한조선학회논문집
    • /
    • 제51권6호
    • /
    • pp.503-509
    • /
    • 2014
  • This paper describes the time-domain numerical method for prediction of slamming loads on a ship in waves using the strip theory. The slamming loads was calculated considering the relative vertical velocity between the instantaneous ship motion and wave elevation. For applying the slamming force on a ship section, the momentum slamming theory and the empirical formula-based bottom slamming force were used corresponding to the vertical location of wetted body surface. Using the developed method, the vertical bending moments, relative vertical velocities, and impact forces of S175 containership were compared in the time series for various section locations and wave conditions.

드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정 (Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone)

  • 김희상;박용희;김우영;은희람;안강호
    • 한국입자에어로졸학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

수직형 풍력터빈 익형의 동특성 분석 (Study for Dynamic Stall Characteristics of Vertical Axis Wind Turbine Airfoil)

  • 김철완;조태환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.478-481
    • /
    • 2009
  • As a first step for aerodynamic analysis of vertical axis wind turbine, dynamic stall characteristics of airfoil was investigated. Dynamic stall of wind turbine airfoil is caused by severe variation of angle of attack and relative velocity of flow around airfoil. Angle of attack and relative velocity can be expressed with tip speed ratio. Variation of angle of attack is strongly dependent on the tip speed ratio. For tip speed ratio, 1.4 and free stream velocity, 15m/s, dynamic stall characteristics of wind turbine airfoil is compared with those of oscillating airfoil having same angle of attack variation.

  • PDF

직교축상의 회전운동용 롤러 종동절을 수반하는 원통형 캠의 형상설계를 위한 상대속도법에 관한 연구 (A study on relative velocity approach for shape desing to cylindrical cam with rotating roller follower on faced-vertical axes)

  • 김성원;신중호;강동우;장세원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.612-615
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedures must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and the coordinate transformation are used to find a contact point between the cam and the follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the shape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

Crustal Movement at Ol Doinyo Lengai based on GPS Measurements

  • Meshili, Valerie Ayubu;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제38권5호
    • /
    • pp.401-406
    • /
    • 2020
  • Continuously monitoring of Horizontal and Vertical movements in vulnerable areas due to earthquakes and volcanic activities is vital. These geohazard activities are the result of a slow deformation rate at the tectonic plate boundaries. The recent development of GPS (Global Positioning System) technology has made it possible to attain a millimeter level changes in the Earth's crust. This study used continuously observed GPS data at the flank of Ol Doinyo Lengai volcanic Mountain to determine crustal motion caused by impinging volcano from mantle convention. We analyzed 8 GPS observed from June 2016 to Dec 2019 using a well-documented Global Kalman Filter GAMIT/GLOBK software. The resulting velocity from GAMIT/GLOBK analysis was then used to compute the relative motion of our study area with respect to Nubia plate. Our analysis discovered a minor motion of less than 5mm/year in both horizontal and vertical components.

현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증 (Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension)

  • 김상섭;정홍규
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

조건이 다른 수직 평형 평판에서 혼합대류 열전달 (Mixed Convection Heat Transfer from Two Vertical Parallel Plates with Different Conditions)

  • 김상영;정한식;권순석
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.243-252
    • /
    • 1992
  • A mixed convection heat transfer from two vertical parallel plates has been studied numerically by the finite difference method. Effects of the Grashof number, the relative length, $L_2/L_1$. the dimensionless temperature ratio, ${\Phi}_2/{\Phi}_1$ and the dimensionless plate spacing, $b/L_1$ are examined for the heat transfer. Independent of the Grashof numbers and $L_2/L_1$, the dimensionless vertical velocity distributions skewed on the left plate as ${\Phi}_2/{\Phi}_1$ decreased. The dimensionless vertical velocity distribution for $Gr/Re^2=1$ and ${\Phi}_2/{\Phi}_1=1.0$ is skewed to the right plate $L_2/L_1=0.5$, symmetric at $L_2/L_1=1.0$ and skewed to the left plate at $L_2/L_1=1.5$. But for $Gr/Re_2=10.0$ and ${\Phi}_2/{\Phi}_1=1.0$ reversed velocity patterns are obtained. Regardless of the Grashof numbers and $L_2/L_1$, the mean Nusselt nembers on the inside surface of the left plate decreases and those of the right inside surface increases as ${\Phi}_2/{\Phi}_1$ increases. Temperature, velocity and mean Nusselt number distributions are apparently not affected by $L_2/L_1$.

  • PDF

종방향대류 및 고액밀도차가 고려된 접촉융해에 대한 해석해 (An analytical solution for the close-contact melting with vertical convection and solid-liquid density difference)

  • 유호선;홍희기;김찬중
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1165-1173
    • /
    • 1997
  • The steady state close-contact melting phenomenon occurring between a phase change material and an isothermally heated flat plate with relative motion is investigated analytically, in which the effects of vertical convection in the liquid film and solid-liquid density difference are incorporated simultaneously. Not only the scale analysis is conducted to estimate a priori qualitative dependence of system variables on characteristic parameters, but also an analytical solution to a set of simplified model equations is obtained to specify the effects under consideration. These two results are consistent with each other, in that the vertical convection affects both the solid descending velocity and the film thickness, and that the density difference alters only the solid descending velocity. While the effect of vertical convection can be characterized conveniently by a newly introduced temperature gradient factor which asymptotically approaches the unity/zero with decreasing/increasing the Stefan number, that of density difference is represented by the liquid-to-solid density ratio. It is shown that the solid descending velocity depends linearly on the density ratio, and that the ratios of solid descending velocity, film thickness and friction coefficient to the conduction solution are proportional to 3/4, 1/4 and -1/4 powers of the temperature gradient factor, respectively. Also, established is the fact that the effect of convection can be legitimately neglected in the analysis for the range of the Stefan number less than 0.1.

A curtain traveling pluviator to reconstitute large scale sand specimens

  • Kazemi, Majid;Bolouri, Jafar B.
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.131-139
    • /
    • 2018
  • The preparation of repeatable and uniformly reconstituted soil specimens up to the specified conditions is an essential requirement for the laboratory tests. In this study for large samples replication, the simultaneous usage of the traveling pluviation and curtain raining technique is used to develop a new method, called the curtain travelling pluviator (CTP). This simple and cost effective system is based on the air pluviation approach, whilst reducing the sample production time, can reproduce uniform samples with relative densities ranging from 25% to 96%. In order to investigate the resulting suitability and uniformity from the proposed method, a series of tests is performed. The effect of curtain traveling velocity, curtain width, drop height, and flow rate on the parameters of the sample is thoroughly investigated. Increase in the curtain velocity and drop height leads to the increase in relative density for the sand specimen. Increase in curtain width typically resulted in the reduction of relative density. Test results reveal that the terminal drop height for the sand specimen in this study is more than 500 mm. Relative density contour lines are presented that can be utilized in optimizing the drop height and curtain width parameters. Sample uniformity in the vertical and horizontal orientation is investigated through the sampling containers. Increasing relative density tends to result in the higher sample repeatability and uniformity.

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.