• 제목/요약/키워드: Relative precision

Search Result 698, Processing Time 0.039 seconds

Development of Sequential Sampling Plans for Tetranychus urticae in Strawberry Greenhouses (딸기 온실에서 점박이응애의 축차표본조사법 개발)

  • Choe, Hojeong;Kang, Juwan;Jung, Hyojin;Choi, Sira;Park, Jung-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-436
    • /
    • 2017
  • A fixed-precision-level sampling plan was developed to establish control of the two-spotted spider mite, Tetranychus urticae, in two strawberry greenhouses (conventional plot, natural enemy plot). T. urticae was sampled by taking a three-leaflet leaf (1 stalk) from each plant (3 three-leaflet leaves) from each sampling position. Each leaflet was divided into three different units (1-leaflet, 2-leaflet, and 3-leaflet units) to compare relative net precision (RNP) values for selection of the appropriate sampling unit. The relative net precision values indicated that a 1-leaflet unit was more precise and cost-efficient than other units. The spatial distribution analysis was performed using Taylor's power law (TPL). Homogeneity of the TPL parameters in each greenhouse was evaluated by using the analysis of covariance (ANCOVA). A fixed-precision-level sequential sampling plan was developed using the parameters of TPL generated from the combined data of the conventional plot and natural enemy plot in a 1-leaflet sampling unit. Sequential classification sampling plans were also developed using the action threshold of 3 and 10 mites for pooled data. Using the results obtained in the independent data, simulated validation of the developed sampling plan by Resampling validation for sampling plan (RVSP) indicated a reasonable level of precision.

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements

  • Kang, Dae-Eun;Park, Sang-Young;Son, Jihae
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.

A Study on Design of Barrel Cam Using Relative Velocity (상대속도를 이용한 바렐 캠의 설계에 관한 연구)

  • Shin, Joong-Ho;Kim, Sung-Won;Kang, Dong-Woo;Yoon, Ho-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.47-54
    • /
    • 2002
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents two examples for the shape design of the barrel cam in order to prove the accuracy of the proposed methods.

A Study on Curvature Determination Approach of Disk Cams Using relative Accelerations of Followers (종동절의 상대가속도를 이용한 원반 캠의 곡률반경 결정법에 관한 연구)

  • Shin, Joong-Ho;Kang, Dong-Woo;Kim, Jong-Soo;Kim, Dae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.113-119
    • /
    • 2000
  • There are two major factors which affect the cam design : the pressure angle and the radius of curvature, Cam shape will have an instantaneous radius of curvature at every point. Even though the design constraint of the pressure angle has been satisfied the follower may still not complete the desired contact motion. If the radius of the follower roller is larger than the concave(negative) radius on the cam it occurs the gap between the cam and the follower roller at the contact point. And also if the curvature of the pitch curve of the cam is too sharp the cam profile may be undercut. This paper proposes a new approach which uses the relative velocity of the follower roller parallel to the tangent line at the contact point on the cam surface for determining the pressure angle and the relative acceeration for determining the radius of curvature.

  • PDF

Characteristic of the Wear and Lubrication using the Friction Froce Measurement in CMP Process (CMP 공정에서 마찰력 측정을 통한 마멸 및 윤활 특성에 관한 연구)

  • Park, Boum-Young;Kim, Hyoung-Jae;Seo, Heon-Deok;Kim, Goo-Youn;Lee, Hyun-Seop;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.231-234
    • /
    • 2004
  • Chemical mechanical polishing(CMP) process was studied in terms of tribology in this paper. CMP performed by the down force and the relative motion of pad and wafer with the slurry is typically tribological system composed of friction, wear and lubrication. The piezoelectric quartz sensor for friction force measurement was installed and the friction force was detected during CMP process. Various coefficient of friction was attained and analyzed with the kind of pad, abrasive and the abrasive concentration. The lubrication regime is also classified with ${\eta}v/p(\eta,\;v\;and\;p;$ the viscosity, relative velocity and pressure). Especially, the co-relation not only between the friction force and the removal per unit distance but also between the coefficient of friction and within-wafer-nonuniformity was estimated.

  • PDF

The Effect of Pad Surface Characteristics on Within Wafer Non-uniformity in CMP (연마불균일도에 영향을 미치는 패드 표면특성에 관한 연구)

  • Park, Ki-Hyun;Park, Boum-Young;Jeong, Jae-Woo;Lee, Hyun-Seop;Jeong, Suk-Hoon;Jeong, Hae-Do;Kim, Hyung-Ja
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.38-39
    • /
    • 2005
  • We have investigated the effect of the pad surface characteristics such as roughness, groove density and wear of pad on within wafer non-uniformity(WIWNU) in chemical mechanical polishing(CMP). We found that WIWNU increases as pad surface roughness($R_{pk}$; Reduced peak height) increases in an early stage of polishing. But after polishing time goes to a certain extent, WIWNU decreases as uniformity of pad surface roughness. Also, groove of pad has effect on relative pad stiffness although original mechanical properties of pad are unchanged by grooving. WIWNU decreases as relative pad stiffness decreases. In addition, conditioning process causes non-uniform wear of pad during in CMP. The profile of pad wear has a significant effect on WIWNU.

  • PDF

A Study on the Calibration of Z-axis Depth of Cut using AE Signal in Micro-machining (마이크로 가공에서 AE 신호를 이용한 z 축 절삭깊이 보정에 관한 연구)

  • Kang I.S.;Kim J.H.;Kang M.C.;Lee K.Y.;Kim J.S.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.410-413
    • /
    • 2005
  • There are technical requirements to manufacture large size functional parts with not only simple geometries like a flat or spherical surface but also sculptured geometries. In addition, the required machining accuracy for these parts is becoming more severe day-by-day. In general, the forms of machined parts are determined by relative position between the workpiece and the tool during cutting. To improve machining accuracy, the relative position error should be maintained within the required accuracy. This study deals with estimation and calibration of depth of cut using AE signal in micro-machining.

  • PDF

Evaluation of Polishing Characteristics for Polishing Patterns (연마패턴에 따른 연마특성 평가)

  • Cho J.R.;Lee J.Y.;Kimm N.K.;Jung Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1579-1582
    • /
    • 2005
  • Polishing is cutting process that polished workpiece by relative motion of abrasive grain between polishing tool and workpiece. According to relative motion forms(polishing patterns) of abrasive grain, the surface quality is different. Then, polishing patterns are important essential in polishing process. In work field, polishing patterns are determined by an expert of experience. Therefore, to work effective polishing, it is necessary that evaluate polishing characteristics for polishing patterns. And, polishing machine is made with cartesian coordinate robots, we estimate polishing characteristics by measurement of surface roughness.

  • PDF

Chatter Prediction in Endmilling Using Dynamic Cutting Force Modeling (엔드밀링에서의 동절삭력 모델을 이용한 채터예측)

  • Hwang , Cheol-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.104-115
    • /
    • 1999
  • Cutting process, in general, is a closed-loop system consisting of structural dynamics and cutting dynamics, with the cutting forces and the relative displacements between tool and workpiece being the associated variables. There have been a number of works on modeling the cutting process of endmilling, most of which assumed that either one of the tool or workpiece be negligible in tis displacement. In this paper, the relative displacement between tool and workpiece was considered. The proposed model used experimental modal analysis for structural dynamics and an instantaneous uncut chip thickness model for cutting dynamics. Simulation of the model, a time varying cutting system, was performed using 4th order Runge-Kutta method. Subsequent simulation results were utilized to predict chatter over a variety of experiments in slotting operation, showing good agreement.

  • PDF