• Title/Summary/Keyword: Relative precision

Search Result 698, Processing Time 0.053 seconds

Simulation of the Air Conditioning System Using Fuzzy Logic Control

  • Mongkolwongrojn, M.;Sarawit, W.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2270-2273
    • /
    • 2003
  • Fuzzy logic control has been widely implemented in air conditioning and ventilation systems which has uncertainty or high robust system. Since the dynamic behaviors of the systems contain complexity and uncertainty in its parameters , several fuzzy logic controllers had been implemented to control room temperature in the field of air conditioning system. In this paper, the fuzzy logic control has been developed to control room temperature and humidity in the precision air conditioning systems. The nonlinear mathematical model was formulated using energy and continuity equations. MATLAB was used to simulate the fuzzy logic control of the multi-variable air conditioning systems. The simulation results show that fuzzy logic controller can reduce the steady-state errors of the room temperature and relative humidity in multivariable air conditioning systems. The offset are less than 0.5 degree Celsius and 3 percent in relative humidity respectively under random step disturbance in heating load and moisture load respectively

  • PDF

Comparison of Calibration Methods of Phase Center Variations for Precise GPS Monument Positioning (정확한 GPS 기준국 좌표산출을 위한 위상중심 변동량 계산방법 비교)

  • Won Ji-Hye;Park Kwan-Dong;Ha Ji-Hyun;Kim Sang-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.9-14
    • /
    • 2006
  • A determinated position with GPS (Global Positioning System) data processing is the position of the phase center of a GPS antenna. The phase center of a GPS antenna is. not a stable point and depends on the azimuth and elevation angles of GPS satellites. It is known that the phase center variations (PCV) of a GPS antenna are greater in the vertical than the horizontal directions. The PCV calibration models for a GPS. antenna has two approaches: relative and absolute. In this study. we compared the two calibration models using the six operational permanent GPS stations in South Korea and analysed the PCV of each station. In addition, we. tested two different kinds of GPS antennas and compared the results. The accuracy and precision of the relative calibration was worse than the absolute calibration.

  • PDF

Optimal Control for Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.206-220
    • /
    • 2010
  • This paper proposes optimal control techniques for determining translational and rotational maneuvers that facilitate proximity operations and docking. Two candidate controllers that provide translational motion are compared. A state-dependent Riccati equation controller is formulated from nonlinear relative motion dynamics, and a linear quadratic tracking controller is formulated from linearized relative motion. A linear quadratic Gaussian controller using star trackers to provide quaternion measurements is designed for precision attitude maneuvering. The attitude maneuvers are evaluated for different final axis alignment geometries that depend on the approach distance. A six degrees-of-freedom simulation demonstrates that the controllers successfully perform proximity operations that meet the conditions for docking.

Inverse Kinematics of Complex Chain Robotic Mechanism Using Ralative Coordinates (상대좌표를 이용한 복합연쇄 로봇기구의 역기구학)

  • Kim, Chang-Bu;Kim, Hyo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3398-3407
    • /
    • 1996
  • In this paper, we derive an algorithm and develope a computer program which analyze rapidly and precisely the inverse kinematics of robotic mechanism with spatial complex chain structure based on the relative coordinates. We represent the inverse kinematic problem as an optimization problem with the kinematic constraint equations. The inverse kinematic analysis algorithm, therefore, consists of two algorithms, the main, an optimization algorithm finding the motion of independent joints from that of an end-effector and the sub, a forward kinematic analysis algorithm computing the motion of dependent joints. We accomplish simulations for the investigation upon the accuracy and efficiency of the algorithm.

Analysis of Precision According to Photographing Position in Close-Range Digital Photogrammetry (근접수치사진측량의 촬영위치에 따른 정밀도 해석)

  • Seo, Dong-Ju;Lee, Jong-Chool
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.3-11
    • /
    • 2003
  • This study has made photographing respectively by changing the photographic distance, converging angle, picturing direction by use of Rollei d7 metric and d7 $metric^{5}$ that is a measurement digital camera. And also in order to minimize the errors happened at the relative orientation, we have sorted out the round target that the relative orientation is automatically on the programming and have calculated RMSE by carrying out the bundle adjustment. We think that such a study could be used as very important basic data necessary in deriving the optimal photographic conditions by the close-range digital photogrammetry and in judging such a degree.

  • PDF

Kinematic Analysis of a Double-Action Link-Type Die Set for the Enclosed Die Forging (폐쇄단조용 복동링크식 다이세트의 기구학적 해석)

  • Park Rae-Hun;Jun Byoung-Yoon;Lee Min-Cheol;Joun Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1293-1297
    • /
    • 2006
  • In this paper, kinematic analysis of a double-action link-type die set for enclosed die forging is carried out. The structure of the die set and its operational principle during enclosed die forging are introduced in detail. A closed-form solution of the relative velocity of the middle plate with respect to the upper plate after the upper and lower dies are enclosed is given in terms of the link lengths and the distance from the lower pin to the upper pin of the link system. The effect of the link lengths on both strokes and velocities is investigated. It has been shown that the relative velocity of the middle plate with respect to the upper plate varies almost linearly with the stroke of the upper plate.

GAIA PARALLAX ZERO POINT FROM RR LYRAE STARS

  • Gould, Andrew;Kollmeier, Juna A.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Like Hipparcos, Gaia is designed to give absolute parallaxes, independent of any astrophysical reference system. And indeed, Gaia's internal zero-point error for parallaxes is likely to be smaller than any individual parallax error. Nevertheless, due in part to mechanical issues of unknown origin, there are many astrophysical questions for which the parallax zero-point error ${\sigma}({\pi}_0)$ will be the fundamentally limiting constraint. These include the distance to the Large Magellanic Cloud and the Galactic Center. We show that by using the photometric parallax estimates for RR Lyrae stars (RRL) within 8kpc, via the ultra-precise infrared period-luminosity relation, one can independently determine a hyper-precise value for ${\pi}_0$. Despite their paucity relative to bright quasars, we show that RRL are competitive due to their order-of-magnitude improved parallax precision for each individual object relative to bright quasars. We show that this method is mathematically robust and well-approximated by analytic formulae over a wide range of relevant distances.

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

Development of Adhesion Force Measurement Apparatus with High Stiffness and High Resolution (고탄성 고분해능을 갖는 응착력 측정장치의 개발)

  • Kim, Gyu-Sung;Yoon, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.140-146
    • /
    • 2007
  • To understand adhesive phenomena, we need to get force curve between two surfaces. And it is said that high stiffness force analysis system is needed to get precise force curve and more information of the surfaces. Usually the stiffness of the force measurement system is under the order of 10N/m. The stiffer force measurement system, however, results in more information on the surface, because higher stiffness lead to the wider range of force curves, secondly because the force curve obtained through the stiffer one describes more precise relationship between relative tip-sample separation and interaction force. In this paper, considering for stiffness and resolution, the cantilever was designed and we made adhesion force measurement apparatus with high stiffness and high resolution, so we measured adhesive force between Ag-ball and wafer.

Design and Fabrication of Flexible Thin Multilayered Planar Coil for Micro Electromagnetic Induction Energy Harvester (초소형 전자기 유도방식 에너지 하베스터용 연성 박막 다적층 평판 코일 설계 및 제작)

  • Park, Hyunchul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.601-606
    • /
    • 2016
  • In this paper, an energy harvester is developed that has advantages regarding piezoelectric noise minimization, mass production, and an easily available environmental energy source, electromagnetic induction, as well as low-frequency bandwidth and high amplitude. A process for fabricating a three-dimensional multilayered planar coil using micro-electro-mechanical systems (MEMS) on a flexible printed circuit board FPCB is introduced. Optimal shape and size were calculated via internal resistance and inductance, and a prototype was fabricated through the MEMS procedure while considering the possibility of mass production. Although the internal resistance matched the designed value, the electromotive force generated did not reach the intended amount. The main reason for the decrease in efficiency was the low area of coil outskirt exposed to the magnetic field while there was relative motion between the magnet and the coil.