• Title/Summary/Keyword: Relative impedance

Search Result 152, Processing Time 0.024 seconds

Analysis of the Grounding Impedance of a Ground Rod Considering the Frequency-Dependent Resistivity and Relative Permittivity of Soil (토양의 저항률 및 비유전율의 주파수의존성을 고려한 접지봉의 접지임피던스의 해석)

  • Ahn, Chang-Hwan;Choi, Jong-Hyuk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.54-60
    • /
    • 2012
  • When the transient current with high frequency components such as lightning surges are injected the grounding electrodes, the performance of grounding electrodes should be evaluated as grounding impedance. It is restricted to analyze the grounding impedance by measurement approach since the grounding impedance is very different with the shape and size of grounding electrodes, resistivity and relative permittivity of soil and the frequency component of the injected current. So a variety of simulation approaches have been developed. Typically, the soil resistivity measured with low frequency and relative permittivity between 1 and 80 are used for simulation of the grounding impedance. However, the resistivity and relative permittivity of soil are changed with frequency of injected current. In this paper, the frequency-dependent resistivity and relative permittivity of soil are measured and these parameters are reflected in the simulation of the grounding impedance of a ground rod. The simulated results are compared with the measured results. As a result, the simulated results with frequency-dependent soil parameters show capacitive aspect like measured results in the frequency of lower than 100[kHz] and they are more consistent with the measured results in wide frequency range.

Early Detection of Intravenous Infiltration Using Multi-frequency Bioelectrical Impedance Measurement System: Pilot Study

  • Kim, Jaehyung;Shin, Beumjoo;Jeon, Gyerok
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.123-130
    • /
    • 2017
  • The early detection of intravenous (IV) infiltration is necessary to minimize the injury caused by the infiltration, which is one of the most important tasks for nurses. For detecting early infiltration in patients receiving invasive vein treatment, bioelectrical impedance was measured using multi-frequency bioelectrical impedance. The impedance decreased significantly at infiltration, and then decreased gradually over time after infiltration. The relative impedance at 20 kHz decreased remarkably at infiltration, and then gradually decreased thereafter. In addition, the impedance ratio increased temporarily at infiltration and then gradually decreased over time. Furthermore, the impedance at each frequency decreased quantitatively over time. This indicates that IV solution leaking from the vein due to infiltration accumulates in the subcutaneous tissues. Moreover, slopes of log Z vs. log f differently decreased with increasing log f, indicating that the impedance exhibits different responses depending on the frequency.

Studies on the Impedance-Hymidity Characteristics of $TiO_2$-$V_2O_5$ Humidity Sensor ($TiO_2$-$V_2O_5$ 습도감지소자의 감습특성에 관한 연구)

  • 박재환;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.529-535
    • /
    • 1990
  • This paper describes the factors which control the impedance-relative humidity characteristics of the TiO2-V2O5 humidity sensor. To obtain the quantitative relationships between impedance and many manufacturing parameters such as V2O5mol%, the sintering time and temperature, various sets of samples are preared and tested. With changing relative hymidity from 20% to 80%, it is measrued that the corresponding capacitance and impedance from the semicircles which complex impedance plots make. As a result we found that the impedance-relative humidity characteristics are mainly controlled by the doping amount of V2O5 total pore volume and bulk resistence of the elements. We can assume the equivalent circuits of each samples and finally control the sintering time to get a linear humidity impedance response curve which plays an important role in device making. 4mol% V2O5-TiO2 specimen sintered at 90$0^{\circ}C$ for 10min. show liear log(Z) vs. RH characteristics and 10mol% V2O5-TiO2 specimen sintered at the same temp. for 20min. show linear (Z) vs. RH.

  • PDF

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1159-1175
    • /
    • 2015
  • In this study, the effect of temperature variation on the wireless impedance monitoring is analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the three impedance features. The relative effects of temperature variation and prestress-loss are comparatively examined.

Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance (능동 가상 임피던스를 이용한 이동 음원 추종 로봇의 장애물 회피)

  • Han, Jong-Ho;Park, Sook-Hee;Noh, Kyung-Wook;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.200-210
    • /
    • 2014
  • An active virtual impedance algorithm is newly proposed to track a sound source and to avoid obstacles while a mobile robot is following the sound source. The tracking velocity of a mobile robot to the sound source is determined by virtual repulsive and attraction forces to avoid obstacles and to follow the sound source, respectively. Active virtual impedance is defined as a function of distances and relative velocities to the sound source and obstacles from the mobile robot, which is used to generate the tracking velocity of the mobile robot. Conventional virtual impedance methods have fixed coefficients for the relative distances and velocities. However, in this research the coefficients are dynamically adjusted to elaborate the obstacle avoidance performance in multiple obstacle environments. The relative distances and velocities are obtained using a microphone array consisting of three microphones in a row. The geometrical relationships of the microphones are utilized to estimate the relative position and orientation of the sound source against the mobile robot which carries the microphone array. Effectiveness of the proposed algorithm has been demonstrated by real experiments.

Frequency-Dependent Resistivity and Relative Dielectric Constant of Soil on Water Content (수분함유량에 따른 토양의 저항률 및 비유전율의 주파수의존성)

  • Choi, Jong-Hyuk;Cha, Eung-Suk;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.98-104
    • /
    • 2010
  • In order to evaluate the performance of a grounding system against lightning or fault currents including high frequency components, the grounding impedance should be considered rather than the steady state ground resistance. To evaluate the ground impedance, the frequency dependence of resistivity and relative dielectric constant of the soil have to be analyzed. This paper deals with the frequency dependence of the resistivity and relative dielectric constant of three types of soil on water content. As a result, the resistivity of soil is getting lower with increasing of water content. It is nearly independent of the frequency in the range less than 1[MHz], and is decreased over the frequency range above 1[MHz]. On the other hand, the relative dielectric constant is rapidly decreased with the frequency in the range less than 1[MHz], but it is nearly independent on the frequency over the range of 1[MHz]. It was found from the experiments that the frequency-dependant resistivity and relative dielectric constant of soil should be considered when designing the grounding systems for protection from lightning or switching surges.

Relative Measurement of Differential Electrode Impedance for Home Healthcare Device (Home Healthcare 장치를 위한 차동 전극 임피던스의 상대적인 측정)

  • Woo, Y.J.;Yoo, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.469-470
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

  • PDF

Frequency-dependent grounding impedance of the counterpoise based on the dispersed currents

  • Choi, Jong-Hyuk;Lee, Bok-Hee;Paek, Seung-Kwon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.589-595
    • /
    • 2012
  • When surges and electromagnetic pulses from lightning or power conversion devices are considered, it is desirable to evaluate grounding system performance as grounding impedance. In the case of large-sized grounding electrodes or long counterpoises, the grounding impedance is increased with increasing the frequency of injected current. The grounding impedance is increased by the inductance of grounding electrodes. This paper presents the measured results of frequency-dependent grounding impedance and impedance phase as a function of the length of counterpoises. In order to analyze the frequency-dependent grounding impedance of the counterpoises, the frequency-dependent current dissipation rates were measured and simulated by the distributed parameter circuit model reflecting the frequency-dependent relative resistivity and permittivity of soil. As a result, the ground current dissipation rate is proportional to the soil resistivity near the counterpoises in a low frequency. On the other hand, the ground current dissipation near the injection point is increased as the frequency of injected current increases. Since the high frequency ground current cannot reach the far end of long counterpoise, the grounding impedance of long counterpoise approaches that of the short one in the high frequency. The results obtained from this work could be applied in design of grounding systems.

AC dielectric response of poly(p-phenylenevinylene) light emitting devices (주파수 의존성에 따른 고분자 LED의 유전 분산 거동에 관한 연구)

  • 이철의;김세헌;장재원;김상우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.149-152
    • /
    • 2000
  • AC impedance measurements on poly-p-phenylenevinylene (PPV) LEDs in the frequency range between 10 Hz and 10$\^$6/ Hz were carried out. The complex-plane impedance spectra indicate that PPV devices can be represented by equivalent circuits that corresponds to the bulk and interfacial regions at high and low frequencies, respectively. As a result of complex impedance analysis through the separation of bulk and interfacial region impedances, increase of forward bias in Al/PPV/ITO devices gave rise to relative decrease of the interfacial region impedance. Above the electric field of 10$\^$6/ V/cm the PPV device showed a space charge limited current (SCLC) conduction. The dependence of the transport mechanism and dielectric properties on the applied bias voltage is discussed.

  • PDF