• Title/Summary/Keyword: Relative Flow

Search Result 1,429, Processing Time 0.028 seconds

Relative Transmittance and Emission Intensity of Optical Emission Spectroscopy for Fault Detection Application of Reactive Ion Etching (Reactive Ion Etching에서 Optical Emission Spectroscopy의 투과율과 강도를 이용한 에러 감지 기술 제안)

  • Park, Jin-Su;Mun, Sei-Young;Cho, Il-Hwan;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.473-474
    • /
    • 2008
  • This paper proposes that the relative transmittance and emission intensity measured via optical emission spectroscopy (OES) is a useful for fault detection of reactive ion etch process. With the increased requests for non-invasive as well as real-time plasma process monitoring for fault detection and classification (FDC), OES is suggested as a useful diagnostic tool that satisfies both of the requirements. Relative optical transmittance and emission intensity of oxygen plasma acquired from various process conditions are directly compared with the process variables, such as RF power, oxygen flow and chamber pressure. The changes of RF power and Pressure are linearly proportional to the emission intensity while the change of gas flow can be detected with the relative transmittance.

  • PDF

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

A study on the dynamics of a turbine-meter-type flowmeter for hydraulic systems

  • Yokota, Shinichi;Kim, Do-Tae;Suzuki, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.60-65
    • /
    • 1994
  • In this study, the dynamic characteristics of a turbine-meter-type flowmeter is investigated by making use of the remote instantaneous flow rate measurement method (RIFM). The results of the frequency response test indicated that the gain of the flow rate of the turbine-meter-type flowmeter relative to the flow rate of the RIFM was nearly unity up to 40Hz and the phase lag of the flow rate became 90 degrees at 70Hz.

  • PDF

Computational rock physics: Lattice-Boltzmann fluid flow simulation in porous media and its applications

  • Keehm, Young-Seuk;Mukerji, Tapan;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.661-668
    • /
    • 2003
  • This paper presents Lattice-Boltzmann simulation techniques for single-phase and two-phase fluid flow in porous media. Numerical experiments were performed in a digital rock sample from X-ray microtomography. Computed results showed very good agreement with laboratory measurements of permeability and relative permeability. Two applications using these simulation techniques show the potential of the Lattice-Boltzmann flow simulation to solve many difficult problems coupled with fluid flow in porous media.

  • PDF

Development of Wireless Respiratory Air Flow and Urinary Flow Measurement System for Home Healthcare (가정용 무선 호흡기류 및 요속신호 계측 시스템 개발)

  • Cha, Eun-Jong;Lee, In-Kwang;Lee, You-Mi;Han, Soon-Wha;Han, Jeong-Su;Suh, Jae-Won;Park, Chan-Sik;Kim, Kyung-Ah
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1350-1357
    • /
    • 2012
  • Medical system for personal health management recently changes its paradigm from hospital service to self home care based on ubiquitous technology for healthcare anywhere at any time. The present study developed a wireless bio-signal measurement system for patients to self manage pulmonary disease and benign prostate hyperplasia(BPH), both of which are chronic diseases with increasing frequency in modern society. Velocity-type respiratory air flow transducer adapted to develop respiratory module for pulmonary disease management was simplified in structure to measure uni-directional flow since most important diagnostic parameters are evaluated on the expiratory flow signal only. Standard weight measurement technique was introduced to obtain urinary flow signal for BPH management. Three load cell signals were acquired for averaging to minimize noise, followed by accuracy evaluation. Transmission and receiver modules were also developed with user program for wireless communication. Averaged relative errors were 2.05 and 1.02% for respiratory volume and maximal flow rate, respectively, and the relative error was 2.17% for urinary volume, demonstrating that both modules enabled very accurate measurements. Wireless communication distance was verified within 15m, long enough for home care application. The present system allows the user to select a necessary measurement module on a particular health demand and to immediately provide the self-test results, thus better quality health care would be possible.

Effects of Crude Saponin and Saponin-free Fraction of Korea Red Ginseng on the Skin and Cerebral Blood Flow in the Rats (백서의 피부 및 뇌혈류에 미치는 고려홍삼 사포닌 및 비사포닌의 영향)

  • Kim, Shin-Hee;Kim, Cuk-Seong;Park, Jin-Bong;Han, Chan-Soo;Kim, Kwang-Jin;Kim, Shin-Hye;Kim, Se-Hoon;Nam, Ki-Yeul;Jeon, Byeong-Hwa
    • Journal of Ginseng Research
    • /
    • v.26 no.3
    • /
    • pp.132-138
    • /
    • 2002
  • To study the effect of Korea red ginseng (KCG) on the skin and cerebral blood flow, we evaluated the change of skin perfusion rate and cerebral perfusion rate after the intravenous, intraperitoneal, and oral administration of crude saponin (CS) and saponin-free fraction (SFF) of KRG in the rats. The change of skin perfusion rate and cerebral perfusion rate was measured laser doppler flowmetry. The intravenous injections of CS or SFF of KRG and intraperitoneal injection of SFF of KRG did not change the relative skin and cerebral blood flow in the rats. When the rats were treated by the intraperitoneal injection of CS of KRG, relative cerebral blood flow was significantly increased with a time-dependent manner, however, relative skin blood flow was not influenced by the them. Oral administration of CS of KRG slightly increased skin blood flow in the rats. Also, the change of cerebral blood flow by transient bilateral carotid arterial clamp in the CS-treated rats was significantly decreased, compared with control groups. From the above results, it was suggested that Korea red ginseng have a increasing property of cerebral blood flow in the rats.

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: I. Numerical Model Development and Parallel Plate Test (지하 LPG 저장공동에 인접한 단일절리에서의 이상유체거동해석: I. 수치모형의 개발 및 모형실험)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • A two-dimensional finite difference numerical model was developed in order to simulate two-phase fluid flow in a single fracture. In the model, variation of viscosity with pressure and that of relative permeability with water saturation can be treated. For the numerical solution, IMPES method was used, from which the pressure and the saturation of water and gas were computed one by one. Seven cases of model test using parallel plates for a single fracture were performed in order to obtain the characteristic equation of relative permeability which would be used in the numerical model. it was difficult to match the characteristic curves of relative permeability from the model tests with the existing emperical equations, consequently a logistic equation was proposed. As the equation is composed of the parameters involving aperture size, it can be applied to any fracture.

  • PDF

Size Determination of Pollens Using Gravitational and Sedimentation Field-Flow Fractionation

  • Kang, Dong-Young;Son, Min-Seok;Eum, Chul-Hun;Kim, Won-Suk;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.613-618
    • /
    • 2007
  • Pollens are known to be an allergen. They penetrate human respiratory system, triggering a type of seasonal allergic rhinitis called pollen allergy (hey fever). The purpose of this study is to test two field-flow fractionation (FFF) techniques, gravitational FFF (GrFFF) and sedimentation FFF (SdFFF), for their applicability to sizecharacterization of micron-sized pollens. Both GrFFF and SdFFF are elution techniques, providing sequential elution of particles based on size. They allow the size distribution as well as the mean size of the sample to be determined from the elution time. In this study, GrFFF and SdFFF were used to determine the size distribution of Paper Mulberry and Bermuda Grass pollens. For the Paper Mulberry pollen, the mean size obtained by GrFFF is 12.7 μm, and agrees rather well with the OM data with the relative error of 8.0%. For the Bermuda Grass pollen, the mean size obtained by GrFFF is 32.6 μm with the relative error of 12.3%. The mean sizes determined by SdFFF are 12.4 (relative error = 10.1%) and 27.1 μm (relative error = 5.2%) for the Paper Mulberry and the Bermuda Grass pollen, respectively. Although SdFFF tends to yield more accurate size distribution due to lower band broadening under the field strength higher than 1 G, the sizes determined by GrFFF were not significantly different from those by SdFFF.

A Comparative Study on Lowflow Quantiles Estimation in Han River Basin (한강유역의 확률갈수량 추정기법 비교연구)

  • Kim, Kyung-Duk;Kim, Don-Soo;Heo, Jun-Haeng;Kim, Kyu-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.315-324
    • /
    • 2003
  • Stream flow data was analyzed for determining the lowflow which is the standard for river maintenance flow. Lowflow quantiles were estimated based on the parametric and nonparametric methods and two methods were compared by Monte Carlo simulation study. As the results of the parametric method, three probability distributions such as gamma-2, lognormal-2 and Weibull-2, are selected as appropriate models for stream flow data of 13 stations in Han River Basins. According to simulation results, relative bias (RBIAS) and relative root mean square error (RRMSE) of the lowflow quantiles are the smallest when the applied and population models are the same. The fame statistical properties from the nonparametric models are good within the interpolation range. Among 7 bandwidth selectors used in this study, the RRMSEs of the Park and Marron method (PM) are the smallest while those of the Shoaler and Jones method (SJ) are the largest.

Numerical Analysis on the Turbulence Patterns in The Scour Hole at The Downstream of Bed Protection (하상보호공 직하류부 세굴공의 난류양상에 관한 수치해석적 연구)

  • Lee, Jaelyong;Park, Sung Won;Yeom, Seongil;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.20-26
    • /
    • 2019
  • Where hydraulic structures are to be installed over the entire width of a river or stream, usually a bed protection structure is to be installed. However, a local scour occurs in which the river bed downstream of the river protection system is eroded due to the influence of the upstream flow characteristics. This local scour is dominant in the flow and turbulence characteristics at the boundary of the flow direction and in the material of the bed materials, and may gradually become dangerous over time. Therefore, in this study, we compared the turbulence patterns in the local scour hole at the downstream of the river bed protection with the results of the analysis of the mobile bed experiment, and compared with the application of OpenFoam, a three dimensional numerical analysis model. The distribution of depth-averaged relative turbulence intensities along the flow direction was analyzed. In addition to this result, the stabilization of scour hole was compared with the bed shear stress and Shields parameter, and the results were compared by changing the initial turbulent flow conditions. From the results, it was confirmed that the maximum depth of generation of the three-stage was dominantly developed by the magnitude of depth-averaged relative turbulence intensity rather than the mean flow velocity. This result also suggests that design, construction or gate control are needed to control the depth-averaged relative turbulence intensities in order to reduce or prevent the local scour faults that may occur in the downstream part of the bed protection.