• Title/Summary/Keyword: Relative Displacement

Search Result 574, Processing Time 0.028 seconds

A Study on Stability for Traverse Cam of Twising Machine using Shape Design Method of Relative Velocity and Modified Displacement Curves (상대속도에 의한 형상설계법과 개선된 변위선도에 의한 연사기용 Traverse Cam의 안정성에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.31
    • /
    • pp.101-112
    • /
    • 2001
  • A Twisting machine is to twist yarns for improving yarn stiffness. After twisting yarns, the twisting machine is winding yarn at a bobbin. Traverse cam is main part of winding yarn part. In other to improve twisting machine performance and stability, improve traverse cam part. Original displacement curves of traverse cam has two problems. One is that displacement curve has a vertex point the other is that velocity curve is discontinue point. So that, in this paper proposes a modified displacement curves of traverse cam and new shape design method of the traverse cam using the relative velocity method[1]. The relative velocity method calculates the relative velocity of the follower versus the cam at a center of roller, and then determines a contact point by using the geometric relationship and the kinematical constraints. Finally, we present to compare two designed cam. One is designed using original displacement curves the other is using modified displacement curve.

  • PDF

Vision-based hybrid 6-DOF displacement estimation for precast concrete member assembly

  • Choi, Suyoung;Myeong, Wancheol;Jeong, Yonghun;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.397-413
    • /
    • 2017
  • Precast concrete (PC) members are currently being employed for general construction or partial replacement to reduce construction period. As assembly work in PC construction requires connecting PC members accurately, measuring the 6-DOF (degree of freedom) relative displacement is essential. Multiple planar markers and camera-based displacement measurement systems can monitor the 6-DOF relative displacement of PC members. Conventional methods, such as direct linear transformation (DLT) for homography estimation, which are applied to calculate the 6-DOF relative displacement between the camera and marker, have several major problems. One of the problems is that when the marker is partially hidden, the DLT method cannot be applied to calculate the 6-DOF relative displacement. In addition, when the images of markers are blurred, error increases with the DLT method which is employed for its estimation. To solve these problems, a hybrid method, which combines the advantages of the DLT and MCL (Monte Carlo localization) methods, is proposed. The method evaluates the 6-DOF relative displacement more accurately compared to when either the DLT or MCL is used alone. Each subsystem captures an image of a marker and extracts its subpixel coordinates, and then the data are transferred to a main system via a wireless communication network. In the main system, the data from each subsystem are used for 3D visualization. Thereafter, the real-time movements of the PC members are displayed on a tablet PC. To prove the feasibility, the hybrid method is compared with the DLT method and MCL in real experiments.

Development and experimental study on cable-sliding modular expansion joints

  • Gao, Kang;Yuan, Wan C.;Dang, Xin Z.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.795-806
    • /
    • 2017
  • According to the characteristics of continuous beam bridges, the relative displacement is too large to collision or even girder falling under earthquakes. A device named Cable-sliding Modular Expansion Joints(CMEJs) that can control the relative displacement and avoid collision under different ground motions is proposed. Working principle and mechanical model is described. This paper design the CMEJs, establish the restoring force model, verify the force model of this device by the pseudo-static tests, and describe and analyze results of the tests, and then based on a triple continuous beam bridge that has different heights of piers, a 3D model with or without CMEJs were established under Conventional System (CS) and Seismic Isolation System (SIS). The results show that this device can control the relative displacement and avoid collisions. The combination of isolation technology and CMEJs can be more effective to achieve both functions, but it need to take measures to prevent girder falling due to the displacement between pier and beam under large earthquakes.

Cutting Process Modeling of End-Milling in a Closed-Loop Configuration (공구 공작물간의 상대변위를 고려한 엔드밀링의 절삭공정 모델링)

  • 황철현;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1059-1062
    • /
    • 1995
  • In cutting system, relative displacement between rool and workpiece is very important. Even though there have been so many works for modeling cutting process of end-milling, most of them have considered only one displacement of either tool or workpiece instead of both. In this paper, the relative displacement between tool and workpiece is considered for modeling cutting process of end-milling using simple experimental modal analysis and cutting force simulation program is developed. In cutting force model, instantaneous uncut chip thickness model is used and Runge-Kutta method is used for the simulation of time varying cutting system.

  • PDF

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

Speckle Interferometry and Automatic Fringe Analysis for Small Displacement Measurement (미세변위 측정을 위한 스펙클 간섭계의 구성과 자동 Fringe 해석)

  • 김성근;길상근;박한규
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1282-1289
    • /
    • 1989
  • Dual field speckle interferometry that is sensitive to the surface displacement of the object is constructed, and fringe patterns that have the displacement-informations are analysed using digital image processing. From 10\ulcorner to 80\ulcorner with respect to each specklegrams are obtained by double-exposure techniques, which are analysed by the proposed system and algorithm. Up to 10\ulcorner displacement, near measurable lower bound of Speckle Interferometry, fringe visibility is decreased due to decreasing fringe density, therefore relative errors are produced over 10% but over that displacement, relative errors are produced below 5%. Particularly, it is observed that spatial frequencies of each displacement are comparatively linear.

  • PDF

Study on Evaluating Displacement Tolerance of Sky-bridge in Tall Buildings (고층 스카이브리지의 변위 허용치 산정에 대한 연구)

  • Kim, Yun Gon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2020
  • The new method for evaluating the displacement tolerance of sky-bridges with pin-roller type supports was proposed considering both return period of phase difference between connected buildings and geometrical characteristics of skybridge. Because displacement tolerance is relative value, which is most affected by the phase difference of the connected buildings, the dynamic response of these building with time history analysis should be evaluated. However, the initial phase could not be specified, so the result of displacement tolerance would be varied with respect to initial value. Thus, the tolerance can be reasonably evaluated SRSS calculation with design displacements based on statistical approach and of each building. In addition, the geometrical characteristics of sky-bridge should be considered because the transverse displacement of sky-bridge span causes the shear deformation of the bridge and longitudinal displacement tolerance cannot release the shear deformation. Therefore, the some pin-end support in sky-bridge should have longitudinal displacement tolerance to accommodate the shear deformation. By resolving this shear deformation, it is possible not only to accommodate transverse displacement, but also to avoid the complicated joint details such as both pot bearing and guided supports with shear key.

Evaluation of Permanent Lateral Displacement of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반에서 횡방향 반복하중을 받는 말뚝의 영구수평변위 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.17-26
    • /
    • 2017
  • Pile foundations that support offshore structures or transmission towers are dominantly subjected to cyclic lateral loads due to wind and waves, causing permanent displacement which can severely affect stability of the structures. In this study, a series of cyclic lateral load tests were conducted on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the permanent displacement of a cyclic laterally loaded pile. Test results showed that the cyclic lateral loads accumulated the irreversible lateral displacement, so-called permanent displacement. As the number of cyclic lateral load increased, accumulated permanent displacement increased, but the permanent displacement due to one loading cycle gradually decreased. In addition, the permanent displacement of a pile increased with decrement of relative density and decreased by soil saturation. From the test results, the normalized permanent displacement defined as the cumulative permanent displacement to the initial permanent displacement ratio was investigated, and empirical equations for predicting the normalized permanent displacement was developed in terms of relative density of the soil and the number of cyclic lateral load.

A Relative Nodal Displacement Method for Element Nonlinear Analysis (상대 절점 변위를 이용한 비선형 유한 요소 해석법)

  • Kim Wan Goo;Bae Dae sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.

Analysis of Relative Bow Displacements of a Ship in Regula Waves (선박(船舶)의 규칙파중(規則波中)에서의 상대선수변위(相對船首變位)의 해석(解析))

  • D.H.,Bai;Hyo-Chul,Kim;S.H.,Kang;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.53-59
    • /
    • 1982
  • Relative bow-motions of a ship in wave are investigated by using linear theory. The relative displacement is assumed to be composed of incident wave elevation, motion response, dynamic swell-up and ship wave elevation. Radiation problem is solved by distributing sources on the hull surface and wave elevation in a uniform stream is obtained by integrating Havelock's function with centerplane source distributions. Relative displacements for I.T.T.C. S7-175 model are calculated. Dynamic swell-ups make the relative displacement larger except small heading angles. Amplitudes of relative motion on weather-side are generally larger than those on lee-side. Ship wave elevations in a uniform stream also give considerable contributions and our calculations are verified to be reasonable in comparison with experimental results.

  • PDF