• Title/Summary/Keyword: Relationship matrix

Search Result 747, Processing Time 0.036 seconds

Dynamic Behavior of a Timoshenko Beam with a Crack and Moving Masses (크랙과 이동질량을 가진 티모센코 보의 진동특성)

  • 안성진;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.799-804
    • /
    • 2004
  • In this paper a dynamic behavior of simply supported cracked simply supported beam with the moving masses is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics the of. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appeals more greatly.

  • PDF

Vibration Analysis of a Coil Spring by Using Dynamic Stiffness Method (동강성법을 이용한 코일스프링의 진동 해석)

  • Lee, Jae-Hyung;Kim, Seong-Keol;Heo, Seung-Jin;Thompson, D.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1933-1938
    • /
    • 2000
  • The partial differential equations for a coil spring derived from Timoshenko beam theory and Frenet formulae. Dynamic stiffness matrix of a coil spring composed of a circular wire is assembled by using dispersion relationship, waves and natural frequencies. Natural frequencies are obtained from maxima in the determinant of inverse of a dynamic stiffness matrix with appropriate boundary conditions. The results of the dynamic stiffness method are compared with those of transfer matrix method, finite element method and test.

  • PDF

Force Transmission Analyses with Dimensionally Homogeneous Jacobian Matrices for Parallel Manipulators

  • Kim, Sung-Gaun;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.780-788
    • /
    • 2004
  • To avoid the unit inconsistency problem in the conventional Jacobian matrix, new formulation of a dimensionally homogeneous inverse Jacobian matrix for parallel manipulators with a planar mobile platform by using three end-effector points was presented (Kim and Ryu, 2003). This paper presents force relationships between joint forces and Cartesian forces at the three End-Effector points. The derived force relationships can then be used for analyses of the input/output force transmission. These analyses, forward and inverse force transmission analyses, depend on the singular values of the derived unit consistent Jacobian matrix. Using the proposed force relationship, a numerical example is presented for actuator size design of a 3-RRR planar parallel manipulator.

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Nguyen, Dinh-Tuyen;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.448-457
    • /
    • 2012
  • This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.

Influence of Crack on Dynamic Behavior of Simply Supported Beam with Moving Mass (이동질량을 가진 단순지지 보의 동특성에 미치는 크랙의 영향)

  • 윤한익;이용운;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.720-729
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beam with the moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack is increased the frequency of the simply supported beam with the moving mass is increased.

A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam (티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구)

  • 손인수;안성진;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.958-963
    • /
    • 2003
  • In this paper a dynamic behavior of simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appears more greatly.

  • PDF

The Evaluation of the Information Service and Community Factors in Korean Public Websites (공공 웹사이트의 정보서비스 및 커뮤니티 요소 평가 -한국 관공서, 군, 경찰 홈페이지를 중심으로-)

  • 이재관
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.1
    • /
    • pp.76-87
    • /
    • 2003
  • This paper proposes that we need a simpler method for developing the Website strategy for public institutions. The research objectives are threefold: (1) A model that relates to the monitoring of Website strategy in the public sector is proposed. The model includes basic dimensions and a $2{\times}3$ matrix that is a simplified version of the Mohammed et dl.s Marketspace Matrix. (2) The model is tested empirically with a sample of 56 Websites selected from govemment agencies, military organizations and police stations in Korea. (3) The effect of dimension/factors on the innovation level is tested. A special attention is paid to online attracting that is important for public institutions which usually do not use offline advertising aggressively. Results from regression analyses show that main dimensions (Marketing Drivers and relationship Stages) and three factors (Basic Information, Support Information, and Participation) in the matrix are all significantly influential on the innovation level, but the Attracting is not. Colorful designs and attracting features of a homepage have not necessarily anything to do with innovation. This message can offer a good piece of advice for managers of Websites.

Effect of Temperature on Frequency and Damping Properties of Polymer Matrix Composites

  • Colakoglu, M.
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.111-124
    • /
    • 2008
  • The effect of temperature on natural frequency and damping is investigated in two different composite materials, Kevlar 29 fiber woven and polyethylene cloth, used especially to design ballistic armor. A damping monitoring method is used experimentally to measure the frequency response curve and it is also modeled numerically using a finite element program. The natural frequencies of a material, or a system, are a function of its elastic properties, dimensions and mass. This concept is used to calculate theoretical vibration modes of the composites. The damping properties in terms of the damping factor are determined by the half-power bandwidth technique. Numerically analyzed and experimentally measured time response curves are compared. It is seen that polymer matrix composites have temperature dependent mechanical properties. This relationship is functional and they have different effects against temperature.

Multivariate Poisson Distribution Generated via Reduction from Independent Poisson Variates

  • Kim, Dae-Hak;Jeong, Heong-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.953-961
    • /
    • 2006
  • Let's say that we are given a k number of random variables following Poisson distribution that are individually dependent and which forms multivariate Poisson distribution. We particularly dealt with a method of creating random numbers that satisfies the covariance matrix, where the elements of covariance matrix are parameters forming a multivariate Poisson distribution. To create such random numbers, we propose a new algorithm based on the method reducing the number of parameter set and deal with its relationship to the Park et al.(1996) algorithm used in creating multivariate Bernoulli random numbers.

  • PDF

A Geometrical Approach to the Characteristic Analysis of Parallel Mechanism for Planar Task (평면 작업용 병렬 메카니즘의 특성 해석을 위한 기하학적 접근)

  • Song, Nak-Yoon;Cho, Hwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.158-166
    • /
    • 1998
  • This paper presents a geometrical approach to the characteristic analysis of parallel mechanism with free joints intended for use as a planar task robot. Solution of the forward and inverse kinematic problems are described. Because the mechanism has only three degree-of-freedom output, constraint equations must be generated to describe the inter-relationship between actuated joints and free joints so as to describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. and it is used for the solution of the forward kinematic equations by Newton-Raphson technique. Another Jacobian matrix was derived to describe the interrelationship between actuated joints and moving platform. The stiffness, velocity transmission ratio, force transmission ratio and dexterity of the mechanism are then determined based on this another Jacobian matrix. The geometrical construction of the mechanism for the best performance was investigated using the characteristic analysis.

  • PDF