• 제목/요약/키워드: Relation Function Structure

검색결과 230건 처리시간 0.026초

장섬유강화 고분자복합판의 압축성형에 있어서 섬유의 분리와 배향의 상관관계에 관한 연구 (A Study on Correlation Between Separation and Orientation of Fibres During Compression Molding of Long Fibre-Reinforced Polymeric Composites)

  • 이동기;유정훈;김이곤
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.62-68
    • /
    • 1993
  • 본 연구에서는 장섬유강화 고분자복합판을 고온압축성형할 때 섬유의 분리 및 배향은 서로 불가분의 관계가 있으므로, 모재와 섬유의 분리에 의해서 야기되는 성형 품의 불균질성을 나타내는 균질도와 섬유의 배향을 표시하는 배향함수와의 상관관계에 대한 실험결과를 보고한다.

사상체질성립기전에 대한 이론적 고찰 (A theoretical study on the forming mechanism of Sasang constitution)

  • 지상은;최선미;조황성
    • 한국한의학연구원논문집
    • /
    • 제4권1호통권4호
    • /
    • pp.47-62
    • /
    • 1998
  • We explicate the forming mechanism of Sasang constitution as the principle of energy distribution which is based on the evolutionary hypothesis. The result was obtained as follows: 1. The principle of form-image (形象) in oriental medicine can be explained with the relation between structure and function that a life acquires through the adaptation and evolution. 2. The Sung-jung (性情) in Sasang constitutional medicine can be explained as the strategy for survival or the pattern of adaptation by which an individual or a species lives in this world. 3. The forming mechanism of Sasang constitutional organic phase (臟局) can be explained as the principle of energy distribution which includes three hypothesis (hypothesis of limited resources, hypothesis of preference and hypothesis of effectiveness). 4. It is postulated that the local hemodynamics is one of the most important factors that determine the difference of Sasang constitutional organic function. 5. The relation of metabolic rate, local hemodynamics and thermo-metabolism is inseparable and it is the important point of forming mechanism of Sasang constitution and the diagnosis of pulse.

  • PDF

활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교 (Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions)

  • 김마가;최진용;방재홍;윤푸른;김귀훈
    • 한국농공학회논문집
    • /
    • 제63권1호
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.

Radial deformation and band-gap modulation of pressurized carbon nanotubes

  • Taira, Hisao;Shima, Hiroyuki;Umeno, Yoshitaka;Sato, Motohiro
    • Coupled systems mechanics
    • /
    • 제2권2호
    • /
    • pp.147-157
    • /
    • 2013
  • We numerically investigate the electronic band structure of carbon nanotubes (CNTs) under radial corrugation. Hydrostatic pressure application to CNTs leads to a circumferential wave-like deformation of their initially circular cross-sections, called radial corrugations. Tight-binding calculation was performed to determine the band gap energy as a function of the amplitude of the radial corrugation. We found that the band gap increased with increasing radial corrugation amplitude; then, the gap started to decline at a critical amplitude and finally vanished. This non-monotonic gap variation indicated the metal-semiconductor-metal transition of CNTs with increasing corrugation amplitude. Our results provide a better insight into the structure-property relation of CNTs, thus advancing the CNT-based device development.

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

Constrained Dynamic Responses of Structures Subjected to Earthquake

  • Eun, Hee Chang;Lee, Min Su
    • Architectural research
    • /
    • 제8권2호
    • /
    • pp.37-42
    • /
    • 2006
  • Starting from the quadratic optimal control algorithm, this study obtains the relation of the performance index for constrained systems and Gauss's principle. And minimizing a function of the variation in kinetic energy at constrained and unconstrained states with respect to the velocity variation, the dynamic equation is derived and it is shown that the result compares with the generalized inverse method proposed by Udwadia and Kalaba. It is investigated that the responses of a 10-story building are constrained by the installation of a two-bar structure as an application to utilize the derived equations. The structural responses are affected by various factors like the length of each bar, damping, stiffness of the bar structure, and the junction positions of two structures. Under an assumption that the bars have the same mass density, this study determines the junction positions to minimize the total dynamic responses of the structure.

Human Sensibility Ergonomics Investigation of Car Navigation System Digital Map Color Structure

  • Cha, Doo-Won;Park, Peom
    • 산업경영시스템학회지
    • /
    • 제23권60호
    • /
    • pp.47-55
    • /
    • 2000
  • Two experiments were conducted to examine the relationships between the color structure and the user preference of a CNS (Car Navigation System) digital map in terms of HSE (Human Sensibility Ergonomics). In the first experiment, the user's preference of color structures were investigated from the subjects' self-designed digital maps using a CNS digital map UIMS (User Interface Management System): in the second, statistical relation models between the user's color structure satisfaction level and the color components of CIE (Commission Internationale de ι'Eclairage) of the real products were suggested. For each experiment, CIE L*u*v* and CIE LCH color space were adapted, respectively, because they have their own characteristics of perceptual uniformity which enables the color components to transform a linear function.

  • PDF

Study of Plasma Treatments to Increase Work Function of Multilayer Graphene Film

  • Maeng, Min-Jae;Kim, Ji-Hoon;Kwon, Dae-Gyeon;Hong, Jong-Am;Park, Yongsup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.198.2-198.2
    • /
    • 2014
  • We investigated change of the electronic structure, chemical states and elements ratio in graphene film by using photoelectron spectroscopy (PES). The graphene electrode has attracted considerable interest due to its possible applications in flexible organic light emitting diodes (F-OLEDs). However, to use the graphene for OLEDs, sufficient increase of work function is required, that is related with hole injection barrier. Plasma treatment is one of the most widely used method in OLEDs to increase the work function of the anode such as indium tin oxide (ITO). In this work, we used the plasma treatment, which is generated by various gas types such as O2, and Ar to increase the work function of the graphene film. From these results, we discuss the relation among the change of work function, plasma power, plasma treatment time and gas types.

  • PDF

접촉응력해석을 통한 핵연료 지지격자 구조물의 최적설계 (Optimal Design of a Nuclear Fuel Rod Support Structure Based on Contact Stress Analysis)

  • 장인권;곽병만;송기남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.731-736
    • /
    • 2000
  • An optimal design method is adopted for a spacer grid in nuclear power plant. It is made of punched sheet metal process, functioning as springs and dimples supporting fuel rods. For stress analysis of the assembled fuel rod support, a typical cell out of the repeated pattern in the assembly is modeled using 4-node shell elements. A commercial code, ABAQUS, is used for detailed analysis of contacting phenomena with friction. For the optimization, design varibles are taken from geometric parameters representing the shape of the bent leaf spring part and mating contact region with fuel rod. Objective function is considered in relation to mechanical functions and durability. Maximum yon Mises stress is considered in relation to constrained contact stress.

  • PDF