Browse > Article
http://dx.doi.org/10.12989/csm.2013.2.2.147

Radial deformation and band-gap modulation of pressurized carbon nanotubes  

Taira, Hisao (Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University)
Shima, Hiroyuki (Department of Environmental Sciences & Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi)
Umeno, Yoshitaka (Institute of Industrial Science, The University of Tokyo)
Sato, Motohiro (Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University)
Publication Information
Coupled systems mechanics / v.2, no.2, 2013 , pp. 147-157 More about this Journal
Abstract
We numerically investigate the electronic band structure of carbon nanotubes (CNTs) under radial corrugation. Hydrostatic pressure application to CNTs leads to a circumferential wave-like deformation of their initially circular cross-sections, called radial corrugations. Tight-binding calculation was performed to determine the band gap energy as a function of the amplitude of the radial corrugation. We found that the band gap increased with increasing radial corrugation amplitude; then, the gap started to decline at a critical amplitude and finally vanished. This non-monotonic gap variation indicated the metal-semiconductor-metal transition of CNTs with increasing corrugation amplitude. Our results provide a better insight into the structure-property relation of CNTs, thus advancing the CNT-based device development.
Keywords
carbon nanotube; radial corrugation; electronic structure; band gap energy; numerical calculation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nishidate K. and Hasegawa M. (2008), "Universal band gap modulation in semiconductor single-walled carbon nanotubes", Phys. Rev. B, 78(19), 1954031-1954036.
2 Ono S. and Shima H. (2009), "Tuning the electrical resistivity of semiconductor thin films by nanoscale corrugation", Phys. Rev. B, 79(23), 2354071-2354076.
3 Pantano A., Campanella D., Montinaro N. and Cerniglia D. (2013), "Electronic properties of carbon nanotubes under torsion", Appl. Phys. A, 110(1), 77-85.   DOI
4 Papaconstantopoulos D.A., Mehl M.J., Erwin S.C. and Pederson M.R. (1998), "Tight-binding Hamiltonians for carbon and silicon", MRS Symp. Proc., 491, 221-224.
5 Poklonski N.A., Ratkevich S.V., Vyrko S.A., Kislyakov E.F., Bubel' O.N., Popov A.M., Lozovik Y.E., Hieu N.N. and Viet N.A. (2012), "Structural phase transition and band gap of uniaxially deformed (6,0) carbon nanotube", Chem. Phys. Lett., 545, 71-77.   DOI   ScienceOn
6 Reich S., Thomsen C. and Ordejon P. (2002), "Elastic properties of carbon nanotubes under hydrostatic pressure", Phys. Rev. B, 65(15), 153407.   DOI   ScienceOn
7 Ren Y., Chen K.-Q., Wan Q., Zou B.S. and Zhang Y. (2009), "Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices", Appl. Phys. Lett., 94(18), 1835061-1835063.
8 Shen W., Jiang, B., Han B.S. and Xie S.S. (2000), "Investigation of the radial compression of carbon nanotubes with a scanning probe microscope", Phys. Rev. Lett., 84(16), 3634-3637.   DOI   ScienceOn
9 Shima H., Ghosh S., Arroyo M., Iiboshi K. and Sato M. (2012), "Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes", Comp. Mater. Sci., 52(1), 90-94.   DOI   ScienceOn
10 Shima H. and Sato M. (2008), "Multiple radial corrugations in multiwalled carbon nanotubes under pressure", Nanotechnology, 19(49), 495705:1-195705:8.
11 Shima H. and Sato M. (2009), "Pressure-induced structural transitions in multi-walled carbon nanotubes", Phys. Stat. Sol. A, 206(10), 2228-2233.   DOI   ScienceOn
12 Shima H., Sato M., Iiboshi K., Ghosh S. and Arroyo M. (2010), "Diverse corrugation pattern in radially shrinking carbon nanotubes", Phys. Rev. B, 82(8), 0854011-0854017
13 Shima H., Yoshioka H. and Onoe J. (2009), "Geometry-driven shift in the Tomonaga-Luttinger exponent of deformed cylinders" Phys. Rev. B, 79(20), 2014011-2014014.
14 Silvestre N. (2012), "On the accuracy of shell models for torsional buckling of carbon nanotubes", Eur. J. Mech. A/Solids, 32, 103-108.   DOI   ScienceOn
15 Azevedo S., Rosas A., Machado M., Kaschny J.R. and Chacham H. (2013), "Effects of deformation on the electronic properties of B-C-N nanotubes", J. Sol. Stat. Chem., 197, 254-260.   DOI   ScienceOn
16 Barboza A.P.M., Gomes A.P., Archanjo B.S., Araujo P.T., Jorio A. and Ferlauto A.S. (2008), "Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electronic force microscopy", Phys. Rev. Lett., 100(25), 2568041-2568044.
17 Chen W., Andreev A.V., Tsvelik A.M. and Orgad D. (2008), "Twist Instability in strongly correlated carbon nanotubes", Phys. Rev. Lett., 101(24), 2468021-246804.
18 Chesnokov S.A., Nalimova V.A., Rinzler A.G., Smalley R.E. and Fischer J.E. (1999), "Mechanical energy storage in carbon nanotube springs", Phys. Rev. Lett., 82(2), 343-346.   DOI   ScienceOn
19 Choudhary S. and Qureshi S. (2012), "Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting SiC nanotube", Bull. Mater. Sci., 35(5), 713-718.   DOI   ScienceOn
20 Faria B., Silvestre N. and Canongia Lopes J.N. (2012), "Torsion-twisting dependent kinematics of chiral CNTs", Compos. Sci. Tech., 74(24), 211-220.
21 Faria B., Silvestre N. and Canongia Lopes J.N. (2013), "Induced anisotropy of chiral carbon nanotubes under combined tension-twisting", Mech. Mater., 58, 97-109.   DOI   ScienceOn
22 Farshidianfar A. and Soltani P. (2012), "Nonlinear flow-induced vibration of a SWCNT with a geometrical imperfection", Comp. Mater. Sci., 53(1), 105-116.   DOI   ScienceOn
23 He Z., Ke X., Bais S. and Tendeloo G.V. (2012), "Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections", Carbon, 50(7), 2524-2529.   DOI   ScienceOn
24 Ishii H., Kataura H., Shiozawa H. and Yoshioka H. (2003), "Gate-induced crossover from unconventional metals to Fermi liquids in multiwalled carbon nanotubes", Nature, 426(6966), 540-544.   DOI   ScienceOn
25 Huang X., Liang W. and Zhang S. (2011), "Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions", Nanoscale Res. Lett., 6, 531-536.   DOI   ScienceOn
26 Aghaei A. and Dayal K. (2012), "Tension and twist of chiral nanotubes: torsional buckling, mechanical response and indicators of failure", Model. Simul. Mater. Sci. Eng., 20(8), 0850011-08500113.
27 Ando T (2005), "Theory of electronic states and transport in carbon nanotubes", J. Phys. Soc. Jpn., 74(3), 777-817.   DOI   ScienceOn
28 Kanbara T., Iwasa T., Tsukagoshi K., Aoyagi Y. and Iwasa Y. (2004), "Gate-induced crossover from unconventional metals to Fermi liquids in multiwalled carbon nanotubes", Appl. Phys. Lett., 85(26), 6404-6406.   DOI   ScienceOn
29 Ke C.-H., Pugno N., Peng B. and Espinosa H.D. (2006), "Experiments and modeling of carbon nanotube-based NEMS", J. Mech. Phys. Sol., 53(6), 1314-1333.
30 Li C. and Chou T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499.   DOI   ScienceOn
31 Silvestre N., Faria B. and Duarte A. (2012), "Multilevel approach for the local nanobuckling analysis of CNT-based composites", Coupled Systems Mech., 1(3), 269-283.   DOI   ScienceOn
32 Tang D.S., Bao Z.X., Wang L.J., Chen L.C., Sun L.F., Liu Z.Q., Zhou W.Y. and Xie S.S. (2000), "The electrical behavior of carbon nanotubes under high pressure", J. Phys. Chem. Solids, 61(7), 1175-1178.   DOI   ScienceOn
33 Tang J., Qin L.C., Sasaki T., Yudasaka M., Matsushita A. and Iijima S. (2000), "Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure", Phys. Rev. Lett., 85(9), 1887-1889.   DOI   ScienceOn
34 Umeno Y., Kitamura T. and Kushima A. (2004b), "Metallic-semiconducting transition of single-walled carbon nanotubes under high axial strain", Comp. Mater. Sci., 31(1-2), 33-41.   DOI   ScienceOn
35 Tang J., Qin L.C., Sasaki T., Yudasaka M., Matsushita A. and Iijima S. (2002), "Revealing properties of single-walled carbon nanotubes under high pressure", J. Phys.: Condens. Matt., 14(44), 10575-10578.   DOI   ScienceOn
36 Umeno Y. (2011), "Tight-binding calculation of deformation and band gap of single-walled carbon nanotubes under axial tension and radial compression", Proc. Eng., 14(24), 2386-2393   DOI   ScienceOn
37 Umeno Y., Kitamura T. and Kushima A. (2004a), "Theoretical analysis on electronic properties of zigzag-type single-walled carbon nanotubes under radial deformation", Comp. Mater. Sci., 30(3-4), 283-287.   DOI   ScienceOn
38 Wong J.H., Wu B.R. and Lin M.F. (2012), "Strain Effect on the Electronic Properties of Single Layer and Bilayer Graphene" J. Phys. Chem. C, 116(14), 8271-8277.   DOI   ScienceOn
39 Yu M.F., Kowalewski T. and Ruoff R.S. (2000), "Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force", Phys. Rev. Lett., 85(7), 1456-1459.   DOI   ScienceOn
40 Lordi V. and Yao N. (1998), "Radial compression and controlled cutting of carbon nanotubes", J. Chem. Phys., 109(6), 2509-2512.   DOI   ScienceOn
41 Lu W., Chou T-W. and Kim B-S. (2011), "Radial deformation and its related energy variations of single-walled carbon nanotubes", Phys. Rev. B, 83(13), 1341131-1341138.
42 Mehl M.J. and Papaconstantpoulos D.A. (1996), "Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals", Phys. Rev. B, 54(7), 4519-4530.   DOI   ScienceOn