• Title/Summary/Keyword: Reinforcement ratio

Search Result 1,300, Processing Time 0.094 seconds

Numerical Study on Flexural Strength of Reinforced Concrete members Exposed to Fire (가열조건에 따른 철근콘크리트 부재의 휨 강도에 관한 해석적 연구)

  • 이상호;허은진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.195-205
    • /
    • 2001
  • This Paper describes a numerical method to evaluate the flexural strength of reinforced concrete members exposed to fire. An analytical method is developed for the moment-curvature relationship for the cross section which is subjected to high temperature. The method performs heat-transfer analysis for the cross sections and subsequently performs numerical analysis using the stress-strain relationships of concrete and reinforcing steel in various heat conditions. The results of the numerical studies are ; 1) the residual flexural strength exposing at high temperature is affected by the heating time, the depth of concrete cover and reinforcement ratio, 2) the residual flexural strength after exposed at high temperature is recovered of its original strength at minimum ratio of reinforcement, while members having half of maximum ratio and maximum ratio of reinforcement do not recover its original strength, 3) furthermore, the concrete may reach its maximum capacity before reinforcement yields in reinforced concrete members having maximum ratio of reinforcement.

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

Evaluation of Minimum Shear Reinforcement Content of Reinforced Concrete Beams (철근콘크리트 보의 최소전단철근비 예측)

  • 윤성현;이정윤;김상우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.253-258
    • /
    • 2002
  • An evaluation equation of the minimum shear reinforcement content for reinforced concrete beams was theoretically proposed. The proposed equation takes into account the effects of compressive strength of concrete, longitudinal reinforcement content and shear span ratio. The proposed equation was compared with the current ACI 318-99 and CSA A23.3-94 codes.

  • PDF

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

An Analytical Evaluation of the Ductility of Reinforced High-Strength Concrete Columns (고강도 철근 콘크리트 기둥 부재의 연성해석)

  • 박훈규;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.463-466
    • /
    • 1999
  • Ductility is an important consideration in the design of reinforced high-strength concrete. Therefore, this research investigate the ductile behavior of rectangular high-strength concrete columns like as bridge piers with confinement steel. The effect on the ductility of axial load, lateral reinforcement ratio, longitudinal reinforcement ratio, shear ratio, and compressive strength of concrete were investigated analytically using layered section analysis. As the results, it was proposed the proper relationship between ductility and variables and formulated into equations.

  • PDF

Effect of Core Reinforcement Ratio to PC Wide Girder-Column Joint (PC 넓은 보$\cdot$기둥 접합부에서 코어 철근비의 영향)

  • Song Han-Beom;Kang Dae-Eon;Yang Won-Jik;Yi Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.123-126
    • /
    • 2005
  • The purpose of this study is to evaluate a effect of core reinforcement ratio to PC wide girder-column joint. Three half scale subassemblies were representing a portion of a protype structure were design, constructed, and tested to failure. From the test result, girder-column width ratio play an important role in the improvement of strength and ductility.

  • PDF

A Study of Shear Resistance Characteristics using Shear Test Data with Stirrup (전단보강철근이 있는 기존 전단실험 자료를 이용한 전단특성에 관한 연구)

  • Shin Geun Ok;Lee Chang Shin;Jeong Jae Pyong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.403-406
    • /
    • 2005
  • This paper deals with the propriety of the shear test data with stirrup reported in ACI and ASCE structural journal and the shear resistance characteristics affected by compressive strength of concrere($f_{ck}$), shear span-to-depth ratio (a/d), tensile reinforcement ratio($\rho$), and shear reinforcement ratio($rho_{v}$). The analysis was accomplished by the 242 shear test data. The test data include the flexural failure data around 40$\%$.

  • PDF

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

  • Kwon, S.O.;Bae, S.H.;Lee, H.J.;Lee, K.M.;Jung, S.H.
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.209-213
    • /
    • 2014
  • Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased.