• 제목/요약/키워드: Reinforcement layout

Search Result 43, Processing Time 0.027 seconds

A Framework for Automated Formwork Quality Inspection using Laser Scanning and Augmented Reality

  • Chi, Hung-lin;Kim, Min-Koo;Thedja, Julian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.13-22
    • /
    • 2020
  • Reinforcement steel fixing is a skilled and manually intensive construction trade. Current practice for the quality assessment of reinforcement steel fixing is normally performed by fabricators and has high potential in having errors due to the tedious nature of the work. In order to overcome the current inspection limitation, this study presents an approach that provides visual assistance and inspection enhancement for inspectors to assess the dimensional layout of reinforcement steel fixing. To this end, this study aims to establish an end-to-end framework for rebar layout quality inspection using laser scanning and Augmented Reality (AR). The proposed framework is composed of three parts: (1) the laser-scanned rebar data processing; (2) the rebar inspection procedure integrating with AR; and (3) the checking and fixing the rebar layout through AR visualization. In order to investigate the feasibility of the proposed framework, a case study assessing the rebar layout of a lab-scaled formwork containing two rebar layers is conducted. The results of the case studies demonstrate that the proposed approach using laser scanning and AR has the potential to produce an intuitive and accurate quality assessment for the rebar layout.

  • PDF

Leveraging Reinforcement Learning for Generating Construction Workers' Moving Path: Opportunities and Challenges

  • Kim, Minguk;Kim, Tae Wan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1085-1092
    • /
    • 2022
  • Travel distance is a parameter mainly used in the objective function of Construction Site Layout Planning (CSLP) automation models. To obtain travel distance, common approaches, such as linear distance, shortest-distance algorithm, visibility graph, and access road path, concentrate only on identifying the shortest path. However, humans do not necessarily follow one shortest path but can choose a safer and more comfortable path according to their situation within a reasonable range. Thus, paths generated by these approaches may be different from the actual paths of the workers, which may cause a decrease in the reliability of the optimized construction site layout. To solve this problem, this paper adopts reinforcement learning (RL) inspired by various concepts of cognitive science and behavioral psychology to generate a realistic path that mimics the decision-making and behavioral processes of wayfinding of workers on the construction site. To do so, in this paper, the collection of human wayfinding tendencies and the characteristics of the walking environment of construction sites are investigated and the importance of taking these into account in simulating the actual path of workers is emphasized. Furthermore, a simulation developed by mapping the identified tendencies to the reward design shows that the RL agent behaves like a real construction worker. Based on the research findings, some opportunities and challenges were proposed. This study contributes to simulating the potential path of workers based on deep RL, which can be utilized to calculate the travel distance of CSLP automation models, contributing to providing more reliable solutions.

  • PDF

Effect of Reinforcement Layout on Structural Performance of Reinforced Concrete Coupling Beams with High-strength Steel Bar (철근상세에 따른 고강도 철근이 사용된 철근콘크리트 연결보의 구조성능)

  • Jang, Seok-Joon;Jeong, Gwon-Young;Kim, Sun-Woo;Yun, Hyun-Do;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • This paper describes the experimental results for the structural performance of full-scale coupling beams with different reinforcement layout (diagonal and horizontal). For the reinforcements of the coupling beams, high-strength steel bars(SD500 and SD600) were used in order to improve workability and economic feasibility. The rigid steel frames and linked joints were used to maintain the clear span length (distance between both shear walls) of the coupling beam during the cyclic loading. Experimental results indicated that the diagonally reinforced coupling beam specimen could exhibit more ductile behavior compared to horizontally reinforced specimen. ACI318-14 code is applicable to design of coupling beam with diagonally reinforcement, however, that is overestimating the strength of horizontally reinforced coupling beam. It is remarkable that effective elastic stiffness values of both reinforcement details coupling beam significantly lees than ASCE 41-13.

Leveraging Visibility-Based Rewards in DRL-based Worker Travel Path Simulation for Improving the Learning Performance

  • Kim, Minguk;Kim, Tae Wan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.73-82
    • /
    • 2023
  • Optimization of Construction Site Layout Planning (CSLP) heavily relies on workers' travel paths. However, traditional path generation approaches predominantly focus on the shortest path, often neglecting critical variables such as individual wayfinding tendencies, the spatial arrangement of site objects, and potential hazards. These oversights can lead to compromised path simulations, resulting in less reliable site layout plans. While Deep Reinforcement Learning (DRL) has been proposed as a potential alternative to address these issues, it has shown limitations. Despite presenting more realistic travel paths by considering these variables, DRL often struggles with efficiency in complex environments, leading to extended learning times and potential failures. To overcome these challenges, this study introduces a refined model that enhances spatial navigation capabilities and learning performance by integrating workers' visibility into the reward functions. The proposed model demonstrated a 12.47% increase in the pathfinding success rate and notable improvements in the other two performance measures compared to the existing DRL framework. The adoption of this model could greatly enhance the reliability of the results, ultimately improving site operational efficiency and safety management such as by reducing site congestion and accidents. Future research could expand this study by simulating travel paths in dynamic, multi-agent environments that represent different stages of construction.

Behavior of a tunnel face reinforced with longitudinal pipes - laboratory investigation (실내실험에 의한 수평보강재로 보강된 터널막장의 거동)

  • Yoo, Chung-Sik;Yang, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.91-100
    • /
    • 2002
  • This paper presents the results of laboratory investigation on the deformation behavior of tunnel face reinforced with longitudinal pipes. A series of reduced-scale model tests was carried out to investigate the effect of reinforcement layout on the tunnel face axial displacement as well as the surface settlement. Among other things, the results of the model tests indicate that the axial displacement of tunnel face as well as the ground surface settlement can significantly be reduced by pre-reinforcing the tunnel face with longitudinal pipes, suggesting that the pre-reinforcing technique may effectively be used as a positive ground control method in the urban environments. Also illustrated is that the reinforcing effect is significantly influenced by the reinforcement layout. The implications of the findings from this study are discussed in a great detail.

  • PDF

Effects of Matrix Ductility on the Shear Performance of Precast Reinforced HPFRCC Coupling Beams

  • Yun Hyun-Do;Kim Sun-Woo;Jeon Esther;Park Wan Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.

  • PDF

Reinforcement design for the anchorage of externally prestressed bridges with "tensile stress region"

  • Liu, C.;Xu, D.;Jung, B.;Morgenthal, G.
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.383-397
    • /
    • 2013
  • Two-dimensional tensile stresses are occurring at the back of the anchorage of the tendons of prestressed concrete bridges. A new method named "tensile stress region" for the design of the reinforcement is presented in this paper. The basic idea of this approach is the division of an anchor block into several slices, which are described by the tensile stress region. The orthogonal reinforcing wire mesh can be designed in each slice to resist the tensile stresses. Additionally the sum of the depth of every slice defined by the tensile stress region is used to control the required length of the longitudinal reinforcement bars. An example for the reinforcement design of an anchorage block of an external prestressed concrete bridge is analyzed by means of the new presented method and a finite element model is established to compare the results. Furthermore the influence of the transverse and vertical prestressing on the ordinary reinforcement design is taken into account. The results show that the amount of reinforcement bars at the anchorage block is influenced by the layout of the transverse and the vertical prestressing tendons. Using the "tensile stress region" method, the ordinary reinforcement bars can be designed more precisely compared to the design codes, and arranged according to the stress state in every slice.

Structural Topology Optimization for A Natural Frequency (고유 진동수를 고러한 구조물의 위상 최적설계)

  • 임오강;이진석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.110-120
    • /
    • 1999
  • Topology optimization is used for determining the best layout of structural components to achieve predetermined performance goals. In the present study, we consider that the objective function is to maximize the natural frequency of the structure for a designated mode and the constraint function is to constrain a total material usage. In this paper, using a topology optimization technique based on the homogenized material and the chessboard prevention strategy, we obtain the optimal layout and the reinforcement of an elastic structure. Several examples are presented to show the ability of the topology optimization technique used in this paper to deal with an optimal layout problem for a free vibration structure.

  • PDF

Reinforcement layout design for deep beam based on BESO of multi-level reinforcement diameter under discrete model

  • Zhang, Hu-zhi;Luo, Peng;Yuan, Jian;Huang, Yao-sen;Liu, Jia-dong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.547-560
    • /
    • 2022
  • By presetting various reinforcement diameters in topology optimization with the discrete model finite element analysis, an algorithm of bidirectional evolutionary structural optimization of multi-level reinforcement diameter is presented to obtain the optimal reinforcement topologies which describe the degree of stress of different parts. The results of a comparative study on different reinforcement feasible domain demonstrate that the more angle types of reinforcement are arranged in the initial domain, the higher utilization rate of reinforcement of the optimal topology becomes. According to the nonlinear finite element analysis of some deep beam examples, the ones designed with the optimization results have a certain advantage in ultimate bearing capacity, although their failure modes are greatly affected by the reinforcement feasible domain. Furthermore, the bearing capacity can be improved when constructional reinforcements are added in the subsequent design. However the adding would change the relative magnitude of the bearing capacity between the normal and inclined section, or the relative magnitude between the flexural and shear capacity within the inclined section, which affects the failure modes of components. Meanwhile, the adding would reduce the deformation capacity of the components as well. It is suggested that the inclined reinforcement and the constructional reinforcement should be added properly to ensure a desired ductile failure mode for components.

Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach

  • Ozkal, Fatih Mehmet;Uysal, Habib
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.589-597
    • /
    • 2017
  • Strut-and-tie modeling method, which evolved on truss-model approach, has generally been preferred for the design of complex reinforced concrete structures and structural elements that have critical shear behavior. Some structural members having disturbed regions require exceptional detailing for all support and loading conditions, such as the beam-column connections, deep beams, short columns or corbels. Considering the general expectation of exhibiting brittle behavior, corbels are somewhat dissimilar to other shear critical structures. In this study, reinforcement layout of a corbel model was determined by the participation of structural optimization and strut-and-tie modeling methods, and an experimental comparison was performed against a conventionally designed model.