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Abstract: Travel distance is a parameter mainly used in the objective function of Construction Site 

Layout Planning (CSLP) automation models. To obtain travel distance, common approaches, such 

as linear distance, shortest-distance algorithm, visibility graph, and access road path, concentrate 

only on identifying the shortest path. However, humans do not necessarily follow one shortest path 

but can choose a safer and more comfortable path according to their situation within a reasonable 

range. Thus, paths generated by these approaches may be different from the actual paths of the 

workers, which may cause a decrease in the reliability of the optimized construction site layout. To 

solve this problem, this paper adopts reinforcement learning (RL) inspired by various concepts of 

cognitive science and behavioral psychology to generate a realistic path that mimics the decision-

making and behavioral processes of wayfinding of workers on the construction site. To do so, in 

this paper, the collection of human wayfinding tendencies and the characteristics of the walking 

environment of construction sites are investigated and the importance of taking these into account 

in simulating the actual path of workers is emphasized. Furthermore, a simulation developed by 

mapping the identified tendencies to the reward design shows that the RL agent behaves like a real 

construction worker. Based on the research findings, some opportunities and challenges were 

proposed. This study contributes to simulating the potential path of workers based on deep RL, 

which can be utilized to calculate the travel distance of CSLP automation models, contributing to 

providing more reliable solutions. 
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1. INTRODUCTION 

Construction Site Layout Planning (CSLP) is the task of determining the attributes (e.g., type, 

size, and rotation), location, and the number of temporary facilities temporarily placed on the 

construction site. Placing these facilities in an optimal location can reduce project costs, 

construction duration, and site safety can be improved [1]. Therefore, to find the optimal layout, in 

many studies, optimization models have been developed through various algorithms such as 

Genetic Algorithm [2–5], Total Potential Energy [6], Fuzzy logic [7], and Particle swarm 

optimization [8]. One of the main goals of this optimization problem is to minimize the resources’ 

total travel distance between facilities for the efficiency of resources.  
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Approaches to compute travel distance between facilities in previous studies focus on the 

shortest distance between facilities. For example, some studies using the linear distance between 

facilities for optimization, do not consider obstacles [2,6,7]. Studies using access roads for 

computing the travel distance require predefined road networks and there is no guarantee that actual 

workers and equipment follow these networks [3,8]. As another example, there are approaches that 

only target the shortest distance such as Visibility Graph, Dijkstra, and A* [4,9,10], and most 

recently, there was an attempt to consider the uncertainty of movement in following the shortest 

distance by a construction worker in a grid-based site layout through fuzzy graph theory [5]. 

Due to these limitations, when optimizing a site layout, the travel distance calculated from 

existing approaches may become an inappropriate input. Therefore, in order to solve this problem, 

it is necessary to choose a different approach that can describe the movement path of actual 

workers. 

However, in general, if there are several alternatives to the route to the destination, humans do 

not necessarily follow one shortest route, but can choose a safer and more comfortable route 

according to the situation within a reasonable range [11]. In fact, it is mentioned that in the study 

of human wayfinding, various factors are considered in addition to the shortest route in human 

wayfinding [12–15]. Similarly, in an environment such as a construction site, the route may vary 

depending on the difference in risk depending on the region, and in fact, among the areas where 

site workers can cross, there is a tendency to bypass the area where heavy equipment is frequently 

used [16]. 

Therefore, in order to obtain reliable construction site layout solutions in the optimization model, 

a wayfinding approach that mimics the wayfinding behavior of construction workers on a real site 

is necessary. To this end, reinforcement learning (RL) influenced by neurological learning 

mechanisms can be used [17]. The reason is that the learning form of RL is similar to the process 

for the human learners to obtain a cognitive-like map [18]. Generally, it is known that humans use 

cognitive maps to navigate in a given environment [19]. According to neuroscience research, the 

human cognitive map, which enables positioning and navigation of the spatial environment, is 

created by repeating the process of activating certain cells called grid cells in the hippocampus 

region of the brain whenever one visits a location in the environment [20]. In other words, if 

humans are located in an unknown environment, they will not have spatial information about that 

environment so, in order to find a path, humans need to search the environment to repeatedly 

construct spatial information in a given environment. 

Since the RL, which learns a policy to take action on each state in the direction of maximizing 

the cumulative reward in iterative search, has computational similarity to cognitive mapping, the 

abstract concept of the cognitive map can be mathematically transformed [21]. Thus, RL can be 

used to create pathfinding similar to the behavior of construction workers. Therefore, for the 

purpose of using the RL-based pathfinding approach, this paper identifies the tendencies of 

workers' wayfinding behavior from a literature review on the walking behavior of pedestrians and 

construction workers. In addition, this paper shows that the identified construction workers' 

wayfinding tendencies can be designed as a reward, and accordingly, the potential paths of the 

workers can be simulated through deep RL. Lastly, several opportunities and challenges are 

proposed to improve the RL-based approach based on the findings of the study. 

2. BACKGROUND 

2.1. Reinforcement learning 

RL, One of the machine learning technology, aims to learn how to solve a specific problem by 

interacting with the environment surrounding, which is formulated as Markov Decision Process 



1087 

 

(MDP). In MDP, which is extended from the concept that the future state is independent of the 

previous state (also known as Markov property), an agent acts according to the lapse of discrete 

timesteps. When the agent observes the current state 𝑠 belonging to a finite set of states in the 

environment and takes a specific action 𝑎 belonging to a finite set of actions, it moves to the next 

state 𝑠’ which also belongings to a finite set of states according to the state transition probability 

𝑃𝑠𝑠′
𝑎  and gets the reward 𝑅𝑠𝑠′

𝑎 . This process repeats until a terminal state is reached. In this episodic 

task, in order for the agent to achieve the desired purpose, it is necessary to receive as many 

cumulative rewards as possible. 

To this end, In this paper, one of the policy-based deep reinforcement learning (DRL) 

algorithms, Proximal Policy Optimization (PPO) [22], is used. PPO is a stable and appropriate 

algorithm to learn the optimal policy to maximize the cumulative reward in an environment 

containing a continuous action space. The loss function defined in PPO to approximate the optimal 

policy is defined as (1). 

 𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃) = 𝔼̂𝑡[𝐿𝑡
𝐶𝐿𝐼𝑃(𝜃) − 𝑐1𝐿𝑡

𝑉𝐹(𝜃) + 𝑐2𝑆[𝜋𝜃](𝑠𝑡)  (1) 

Where 𝔼̂𝑡 is the expectation operator, 𝐿𝑡
𝐶𝐿𝐼𝑃(𝜃) is the clipped surrogate objective, 𝐿𝑡

𝑉𝐹(𝜃) is the 

squared-error loss of value functions (𝑉𝜃(𝑠𝑡) − 𝑉𝑡
𝑡𝑎𝑟𝑔

)
2
, S denotes the entropy loss,  𝜋𝜃  is the 

policy that depicts the probability of taking a specific action in a specific state, which is 

approximated by neural networks as an optimal policy, and 𝑐1, 𝑐2 are coefficient. Here, the clipped 

surrogate objective 𝐿𝑡
𝐶𝐿𝐼𝑃(𝜃) is defined as: 

 𝐿𝑡
𝐶𝐿𝐼𝑃(𝜃) = 𝔼̂𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)]                    (2) 

Where 𝐴̂𝑡 is an estimator of the advantage function at timestep 𝑡, 𝑟𝑡(𝜃) is the probability ratio   

𝜋𝜃(𝑎𝑡|𝑠𝑡)/𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡), and 𝜖 is a hyperparameter. 𝑟𝑡(𝜃) is clipped at 1 − 𝜖 or 1 + 𝜖 depending 

on whether the advantage is positive or negative. In this manner, large policy updates can be 

prevented, stable learning is possible. 

Finally, in the PPO algorithm, 𝑇 trajectory segments are collected by interacting between the 

agent and the environment during 𝑇 timesteps using the old policy 𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡) from 𝑁 actors at 

every iteration. Then, we compute 𝐴̂𝑡  using a truncated version of generalized advantage 

estimation (GAE) (3). 

 𝐴̂𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡 +⋯+⋯(𝛾𝜆)
𝑇−𝑡+1𝛿𝑇−1     (3) 

 Where 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡), and 𝛾 is the discount factor. Then the loss function (1) 

has constructed on these 𝑁 ∗ 𝑇 time steps of data, and optimized it with mini-batch Stochastic 

Gradient Descent, for 𝐾 epochs.  

2.2.  The tendency of human wayfinding behavior 

In RL, an agent's specific goal is achieved through reward-based learning. Therefore, it is 

necessary to identify how construction workers behave in the real world. To this end, it is necessary 

to identify their tendency from studies dealing with human wayfinding behavior.  

Humans seem to subconsciously prefer paths that seek to minimize complexity [12]. For 

instance, people use the shortest or less congested routes [13,14] and take the straightest possible 

route to It tries to maintain linearity [12]. Other studies show that humans follow the path with the 

longest sight of the line first [12] or try to use the path with the least change in direction [15]. In 

addition, paths may vary depending on individual stress levels [13], and factors such as the 

attractiveness of the route, sidewalk quality, absence of long waits at traffic lights, etc. affect their 

paths in addition to safety [14]. Also, there is a tendency to use the first noticed route or to use the 

usual route [14]. These various characteristics are also shown in construction simulations [23]. 
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Additionally, workers at the construction site tend to change their path to avoid the dangers caused 

by on-site hazards [24]. Therefore, since the difference in danger level by type of facility or zone 

is relatively large, the workers' path may also be affected by it (e.g., the area around the tower crane 

is more dangerous than a temporary office). 

In summary, since construction sites are relatively less influenced by others compared to general 

pedestrian environments, among the identified tendencies, the dominants of workers' wayfinding 

are the shortest path, maintaining direction, and facility avoidance. 

3. FEASIBILITY OF THE RL-BASED PATHFINDING APPROACH 

3.1. State and Action space  

To model a RL agent that represents construction workers, one must define a state space and an 

action space. First, state space is defined as information about the environment obtained through 

spatial perception at every time step. It consists of the following elements: 1) the relative position 

between the agent and the destination, 2) the agent's velocity, 3) the difference between the agent's 

moving direction and the direction to the destination, 4) the ratio between the total distance traveled 

to the destination and the linear distance, and 5) visual perception data by using rays. Second, for 

the natural movement of the agent, the action space consists of horizontal and vertical movements, 

which are continuous types, and the agent’s movement speed is set at 1.38m/s, which is the average 

human walking speed [25]. 

3.2. Reward design 

Although reward design is the most critical part of the success of RL, it is difficult to design a 

good reward signal [18]. A general reward signal design process is known as an informal trial-and-

error search process to find a signal that produces a satisfactory result. In this process, the reward 

formulation to make the RL agent move like the real construction worker was configured, and the 

reward signal value with the best learning result was found by selecting whether the average 

cumulative reward convergence or not and the convergence speed as the evaluation criteria for 

agent performance. 

As a result of this, the RL agent is able to keep moving by getting a very small penalty for each 

timestep. And, in order to guide the agent to the destination, the agent is rewarded as its moving 

direction is closer to the destination. The identified human tendencies then are able to map as 

rewards. Accordingly, the agent avoids the facilities while considering the danger level of the 

facility, and moves to the destination by the shortest path while changing the direction to the 

minimum. 

3.3. Simulation 

In this paper, we used the Unity engine and ML-agents tool [26] to show the simulation results. 

Unity is a game engine that provides an intuitive interface for development close to realistic 

simulations and provides a machine learning library called ML-agents. For the simulation, we used 

the PPO algorithm aforementioned in Section 2.1, and Curriculum Learning (CL) [27] to improve 

the learning performance was also applied. (Table 1) shown the hyperparameters used throughout 

the simulation. The RL agents were trained on two different start-goal sets in the same construction 

site environment and the paths generated by these agents are shown similar to actual workers’ 

pathfinding (Fig 1-2).  

(Fig. 1) shows that the RL agent is able to generate different potential paths according to the 

danger level of facilities (tower crane and laydown area) that exist between the start and goal point. 

Because the facilities in (Fig 1. (a)) have a relatively high level of danger compared to those in (Fig 
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1. (b)), the path seems to detour the dense area of hazardous facilities while being relatively safe. 

(Fig. 2) shows the path generated by the A* algorithm (Fig. 2(a)) and the RL agent (Fig. 2(b)) for 

another start-goal set. When compared to the A* algorithm, it can be seen that the RL agent 

simulated a path with less direction change. These paths are particularly seen in the paths of 

workers moving loads with equipment such as wheelbarrows. 

 

            

(a)                                                                           (b)     

Figure 1. RL-based paths with different danger level in a construction site environment 

 

     

(a)                                                                             (b)     

Figure 2. Paths simulated by (a) A* algorithm, and (b) RL-based approach 

4. ELICITED OPPORTUNITIES AND CHALLENGES 

The given results confirm that the proposed approach plausibly generates the paths of real 

construction workers, and reveal the potential of this approach for calculating travel distances in 

CSLP. Therefore, the RL-based approach has the potential to overcome the limitations of existing 

approaches, such as not considering the existence of obstacles, only following a predefined 

network, or generating a path based only on the shortest distance among human wayfinding 

tendencies. Based on the results of the study, several opportunities and challenges were found. 

First, there is still room for improvement to obtain satisfactory results through the reward design. 

For example, since the interpretation of a facility's danger level may differ from person to person 

or situation to situation, it may be necessary to examine the danger level of each facility from what 

construction workers perceived, and how to implement it as an appropriate reward function should 

also be considered.  
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Second, the given result only shows that the generated path can be similar to the actual path. 

However, in order to bring the plausibility of the proposed approach, it is necessary to carry out a 

face validation of how realistic the path generated by the proposed approach is [28]. Specifically, 

after generating paths with the existing and proposed approaches in virtual site layout 

environments, a survey can be conducted asking real workers to evaluate how similar each path is 

to the trajectories of real workers. These experimental studies can confirm the usefulness and 

necessity of the proposed approach [29]. 

Third, one of the disadvantages of reinforcement learning is that the training period is long. In 

this paper, it took about 24 minutes on average to train the RL agent 1 million times. To solve this 

problem, it is necessary to investigate the performance of various hyperparameters and perform 

sensitivity analysis. Through this, not only the simulation time can be shortened but also the 

computational performance can be improved based on the sensitivity analysis result. 

Lastly, a framework may be proposed to facilitate this approach. The framework includes the 

required functions for implementation, required attributes that define the types and characteristics 

of site objects required for travel distance computation and Construction Site Layout (CSL) 

optimization, and may include well-configured CL and learning environment configuration. 

 

Table 1. Simulation hyperparameters 

Hyperparameter Value 

Batch size 128 

Buffer size 2560 

Learning rate 𝛼 3e-4 

Regulation term Beta 𝛽 3e-3 

Clipping parameter Epsilon 𝜖 0.2 

GAE parameter Lambda 𝜆 0.95 

Number of epochs 3 

Discount factor Gamma 𝛾 0.99 

Time horizon (trajectory length) 64 

Hidden units 256 

Number of layers 3 

 

5. CONCLUSION 

The pathfinding approaches used in existing CSLP optimization models focus only on the 

shortest path. However, humans consider factors other than the shortest path and choose a safer 

and more comfortable path within a reasonable range. In order to simulate a realistic path for 

workers reflecting these characteristics, a RL-based pathfinding approach that mimics the decision-

making and behavioral processes of wayfinding of construction workers were proposed.  

To do so, in this paper,  the tendency of workers’ wayfinding was identified through a literature 

review on pedestrians and construction workers’ walking behavior. Also, the feasibility of the 

proposed approach was confirmed by using a simulation developed by mapping the identified 

tendencies to the reward design. The simulation showed that the RL agent behaves like a real 

construction worker.  

The following future works were proposed based on the research findings: 1) In order to obtain 

satisfactory agent performance, it is necessary to examine the perceived danger level of each 
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facility from construction workers and the way to design a proper reward formulation. 2) Face 

validation and similarity validation by using surveys and the workers' actual trajectory data should 

be performed to bring the plausibility of the proposed approach. 3) To improve training 

performance, hyperparameter performance can be investigated and sensitivity analysis and tuning 

can be performed. In addition, the similarity of the simulated paths can be improved by 

coordinating the reward value using the trajectory data of the actual workers. 4) A framework may 

be proposed to facilitate the proposed approach. 

In this paper, the potential of the RL-based pathfinding approach for mimicking the actual 

construction worker path was confirmed, which can be applied as a new approach to compute the 

travel distance of the CSLP optimization model in the future. Accordingly, the proposed approach 

is able to contribute to the reliability of the construction site layout derived from the optimization 

model in the future. 
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