• Title/Summary/Keyword: Reinforcement direction

Search Result 300, Processing Time 0.022 seconds

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

A Study on Improve Operational Safety of HEMS (응급의료 전용헬기의 운용 안전성 확보 방안에 대한 연구)

  • Choi, Youn-Chul;Kim, Young-Rok;Choi, Sung-Ho;Bae, Taek-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.122-129
    • /
    • 2020
  • Korea's HEMS are mainly operated during the week, but they are pushing for 24-hour operations. This study has made an overall comparison and review of helicopter safety management that should be accompanied to this end. For research purposes, helicopter regulations and helicopter accident statistics were analyzed, with a high accident rate associated with pilot error and night flight. It was proposed that future preparations would require reinforcement of laws and regulations, reinforcement of pilots' night training, and introduction of training and preflight risk assessments. This study will provide a direction for future helicopter safety. This study will provide for future direction of helicopter safety research.

Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement

  • Yas, M.H.;Garmsiri, K.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency.

Statistical Study of Failure-Modes around the Pibanryeong Region, Boeun-Gun, Chungbuk (충북 보은군 피반령 부근 절취사면의 파괴양상에 대한 통계학적 연구)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.517-528
    • /
    • 2009
  • Statistical analyses of cut-slope stability were performed over approximately 5.7 km section along the National road No. 25, which cross-cuts in NW-SE direction the Cheongwon and Boeun-Gun area, Chungbuk. A measure of slope-stability was established by using direct reinforcement and indirect protection methods in whole section. Orientations(dip/dip direction) of the slopes, foliations(bedding), cleavages and joints were measured in total of 30 slope sites. The results analyzed using stereographic projection indicate that major directions of the slopes come out predominantly in three directions: 1) $58^{\circ}/095^{\circ}$, 2) $60^{\circ}/296^{\circ}$ and 3) $59^{\circ}/212^{\circ}$. In analyses of dip direction and frequency of cut-slopes established by reinforcement and protection methods, slopes with dip direction of $80-120^{\circ}$ and $280-320^{\circ}$ mostly occur. However, slopes with dip direction of $0-80^{\circ}$(N and NW) and $120-160^{\circ}$(SE) are not distributed in the study area. Failure aspects were analyzed for three major directions of the slopes, respectively. The results of failure aspects analyzed indicate that slopes in the study area could generate various failures as the results of intersection and/or intersection combination among joints, foliations(bedding) and cleavages. However, possibility of failure in a slope of major direction No. 3 is statistically very low because of low frequency in total number of slopes with the direction and of formation of small scale-slopes geographically, although the slope might generate all aspects of failure-modes.

Shear strength model for reinforced concrete corbels based on panel response

  • Massone, Leonardo M.;Alvarez, Julio E.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.723-740
    • /
    • 2016
  • Reinforced concrete corbels are generally used to transfer loads within a structural system, such as buildings, bridges, and facilities in general. They commonly present low aspect ratio, requiring an accurate model for shear strength prediction in order to promote flexural behavior. The model described here, originally developed for walls, was adapted for corbels. The model is based on a reinforced concrete panel, described by constitutive laws for concrete and steel and applied in a fixed direction. Equilibrium in the orthogonal direction to the shearing force allows for the estimation of the shear stress versus strain response. The original model yielded conservative results with important scatter, thus various modifications were implemented in order to improve strength predictions: 1) recalibration of the strut (crack) direction, capturing the absence of transverse reinforcement and axial load in most corbels, 2) inclusion of main (boundary) reinforcement in the equilibrium equation, capturing its participation in the mechanism, and 3) decrease in aspect ratio by considering the width of the loading plate in the formulation. To analyze the behavior of the theoretical model, a database of 109 specimens available in the literature was collected. The model yielded an average model-to-test shear strength ratio of 0.98 and a coefficient of variation of 0.16, showing also that most test variables are well captured with the model, and providing better results than the original model. The model strength prediction is compared with other models in the literature, resulting in one of the most accurate estimates.

Behavior of FRP-reinforced steel plate shear walls with various reinforcement designs

  • Seddighi, Mehdi;Barkhordari, Mohammad A.;Hosseinzadeh, S.A.A.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.729-746
    • /
    • 2019
  • The nonlinear behavior of single- and multi-story steel plate shear walls (SPSWs) strengthened with three different patterns of fiber reinforced polymer (FRP) laminates (including single-strip, multi-strip and fully FRP-strengthened models) is studied using the finite element analysis. In the research, the effects of orientation, width, thickness and type (glass or carbon) of FRP sheets as well as the system aspect ratio and height are investigated. Results show that, despite an increase in the system strength using FRP sheets, ductility of reinforced SPSWs is decreased due to the delay in the initiation of yielding in the infill wall, while their initial stiffness does not change significantly. The content/type/reinforcement pattern of FRPs does affect the nonlinear behavior characteristics and also the mode and pattern of failure. In the case of multi-strip and fully FRP-strengthened models, the use of FPR sheets almost along the direction of the infill wall tension fields can maximize the effectiveness of reinforcement. In the case of single-strip pattern, the effectiveness of reinforcement is decreased for larger aspect ratios. Moreover, a relatively simplified and approximate theoretical procedure for estimating the strength of SPSWs reinforced with different patterns of FRP laminates is presented and compared with the analytical results.

Numerical investigation on punching shear of RC slabs exposed to fire

  • Sadaghian, Hamed;Farzam, Masood
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.217-233
    • /
    • 2019
  • This paper describes the numerical modelling of an interior slab-column connection to investigate the punching shear resistance of reinforced concrete (RC) slabs under fire conditions. Parameters of the study were the fire direction, flexural reinforcement ratio, load levels, shear reinforcement and compressive strength of concrete. Moreover, the efficiency of the insulating material, gypsum, in reducing the heat transferred to the slab was assessed. Validation studies were conducted comparing the simulation results to experiments from the literature and common codes of practice. Temperature dependencies of both concrete and reinforcing steel bars were considered in thermo-mechanical analyses. Results showed that there is a slight difference in temperature endurance of various models with respect to concrete with different compressive strengths. It was also concluded that compared to a slab without gypsum, 10-mm and 20-mm thick gypsum reduce the maximum heat transferred to the slab by 45.8% and 70%, respectively. Finally, it was observed that increasing the flexural reinforcement ratio changes the failure mode from flexural punching to brittle punching in most cases.

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF