• Title/Summary/Keyword: Reinforced steel bar

Search Result 352, Processing Time 0.031 seconds

Study on Strengthening of Reinforced Concrete Columns by Central Element (중앙 보강재에 의한 철근콘크리트 기둥의 내진 강화에 관한 연구)

  • 노영곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.517-520
    • /
    • 1999
  • In this study, the problem of strengthening of reinforced concrete (RC) columns by a central steel section with minimum amount is taken up. For this purpose, RC columns with central reinforcing elements such as a steel bar, a steel H section and a steel pipe were taken up. To certify the effect of this way of reinforcing, experimental study using specimens of RC columns of shear span ratio of 2.5 was carried out. The variables which are considered to affect the behavior of RC columns subjected to axial load and cyclic shear load are the magnitude of axial load, tie ratio and main bar ratio. As the results of this study, the effect of a central reinforcing element for making higher the earthquake resistant properties of RC columns were observed.

  • PDF

Bond Strength between Steel and Concrete with Different Diameters in the Same Corrosion Rate (직경별 부식 철근과 콘크리트 간의 부착강도에 관한 연구)

  • Du, Rujun;Jang, Indong;Lee, HyeRin;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.190-191
    • /
    • 2020
  • The bonding of steel bar to concrete is closely related to the roughness and corrosion degree of steel bar surface. The accelerated corrosion of concrete specimens with different reinforcement diameters was carried out in this test. Through the pullout test of the corroded concrete specimens, the relationship between the bond stress and the displacement of the corroded concrete specimens under the corresponding corrosion degree was obtained. The bond stress of reinforced concrete with different size and corrosion degree are compared and analyzed to find out the influence of corrosion on the bonding property of reinforced concrete.

  • PDF

Experimental Investigations on the Flexural Behavior of One-Way Concrete Slabs Reinforced with GFRP Re-Bar Bundle (유리섬유 보강 플래스틱 Re-Bar 다발로 보강된 1방향 콘크리트 슬래브의 휨거동에 관한 실험적 연구)

  • 윤순종;김병석;유성근;정재호;정상균
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • In recent years, the investigation on the development of fiber reinforced plastic(FRP) Re-Bar has been greatly increased due to the attractive physical and mechanical properties of FRP. The primary reason of such a tendency is in the fact that it does not ordinarily cause durability problems such as those associated with steel reinforcement corrosion. This study is an experimental investigation on the flexural behavior of one-way concrete slabs, which can be used to construct bridge deck, reinforced with GFRP Re-Bar bundle. The tensile tests of GFRP Re-Bar produced by domestic industry and third point bending tests of one-way slab specimens reinforced with GFRP Re-Bar bundle are peformed. For all slab specimens, load-deflection relations are predicted by using the ACI committee 440 and the results are compared with experimental ones. In order to establish the design criteria or guidelines of concrete flexural member reinforced with FRP Re-Bar, it is needed to evaluate the serviceability limit state as well as the strength limit state.

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.

Anchorage Strength of High Strength Headed Bar Embedded Vertically on SFRC Members (SFRC 부재에 수직 배근된 고강도 확대머리철근의 정착강도)

  • Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.148-156
    • /
    • 2020
  • The paper is a summary of the results of the basic pullout test which is conducted to evaluate the anchorage capacity of high strength headed bars that is mechanical anchored vertically on steel fiber reinforced concrete members. The main experimental parameters are volume fraction of steel fiber, concrete strength, anchorage length, yield strength of headed bars, and shear reinforcement bar. Both sides of covering depth of the specimen are planned to double the diameter of the headed bars. The hinged point is placed at the position of each 1.5𝑙dt and 0.7𝑙dt around the headed bars, and the headed bars are drawn directly. As a result of pullout test experiment, concrete fracture and steel tensile rupture appear by experimental parameters. The compressive strength of concrete is 2.7~5.4% higher than that of steel fiber with the same parameters, while the pullout strength is 20.9~63.1% higher than that of steel fiber without the same parameters, which is evaluated to contribute greatly to the improvement of the anchorage capacity. The reinforcements of shear reinforcements parallel to the headed bars increased 1.7~7.7% pullout strength for steel fiber reinforced concrete, but the effect on the improvement of the anchorage capacity was not significant considering the increase in concrete strength. As with the details of this experiment, it is believed that the design formula for the anchorage length of KCI2017and KCI2012 are suitable for the mechanical development design of SD600 head bar that is perpendicular to the steel fiber reinforced concrete members.

The influence of EAF dust on resistivity of concrete and corrosion of steel bars embedded in concrete

  • Almutlaq, Fahad M.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.163-176
    • /
    • 2014
  • Essentially, when electrical current flows easily in concrete that has large pores filled with highly connective pore water, this is an indication of a low resistivity concrete. In concrete, the flow of current between anodic and cathodic sites on a steel reinforcing bar surface is regulated by the concrete electrical resistance. Therefore, deterioration of any existing reinforced concrete structure due to corrosion of reinforcement steel bar is governed, to some extent, by resistivity of concrete. Resistivity of concrete can be improved by using SCMs and thus increases the concrete electrical resistance and the ability of concrete to resist chloride ingress and/or oxygen penetration resulting in prolonging the onset of corrosion. After depassivation it may slow down the corrosion rate of the steel bar. This indicates the need for further study of the effect of electric arc furnace dust (EAFD) addition on the concrete resistivity. In this study, concrete specimens rather than mortars were cast with different additions of EAFD to verify the electrochemical results obtained and to try to understand the role of EAFD addition in influencing the corrosion behaviour of reinforcing steel bar embedded in concrete and its relation to the resistivity of concrete. The results of these investigations indicated that the corrosion resistance of steel bars embedded in concrete containing EAFD was improved, which may link to the high resistivity found in EAFD-concrete. In this paper, potential measurements, corrosion rates, gravimetric corrosion weight results and resistivity measurements will be presented and their relationships will also be discussed in details.

Effect of Period of Immersion on Corrosion Potential, Anodic Polarization, and Impedance Characteristics of Reinforced Steel in Mortar (W/C: 0.6) (모르타르(W/C:0.6)의 철근의 부식전위와 양극분극 및 임피던스 특성에 미치는 재령 년수)

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Reinforced concrete structures have found wide usage in land and maritime applications. However, the corrosion of reinforced concrete has been recognized as a serious problem from economic and safety standpoints. In previous studies, the corrosion behavior of the inner steel bar embedded in mortar (W/C: 0.4, 0.5) was investigated using electrochemical methods. In this study, multiple mortar test specimens (W/C: 0.6) with six different cover thicknesses were prepared and immersed in flowing seawater for five years. Subsequently, equations related to the cover thickness, period of immersion, and corrosion characteristics of the embedded steel bar were evaluated using electrochemical methods. Prior to immersion, the corrosion potentials indicated an increase with increasing cover thickness, and after five years, all corrosion potentials demonstrated a trend in the positive direction irrespective of the cover thickness. However, the relationships between the corrosion potential and cover thickness were not in complete agreement. Furthermore, after five years, all of the corrosion potentials indicated values that were nobler compared to those obtained prior to immersion, and their corrosion current densities also decreased compared to their values obtained prior to immersion. It was considered that the embedded steel bar was easily corroded because of the aggression of water, dissolved oxygen, and chloride ions; a higher W/C ratio also assisted the corrosion process. The corrosive products deposited on the surface of the steel bar for five years cast a resistance polarizing effect shifting the corrosion potential in the nobler direction. Consequently, it was considered that the W/C ratio of 0.6 showed nearly same results as those of W/C of 0.4 and 0.5. Therefore, the corrosion potential as well as various parameters such as the cover thickness, period of immersion, and W/C ratio must be considered at once for a more accurate evaluation of the corrosion property of reinforced steel exposed to marine environment for a long period.

A Study on Detecting Steel Bars Embedded inside Concrete using Ground Penetrating Radar (레이더를 이용한 콘크리트 내 철근탐사에 관한 기초연구)

  • 이지훈;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.785-790
    • /
    • 1998
  • Ground Penetrating Radar (GPR) is a powerful tool with a wide range of applications in the nondestructive testing of concrete. It's useful for the detection of steel bars and delaminations embedded inside concrete, nondestructively. The purpose of this study is to detect a reinforced bar embedded inside concrete and to determine the range of application using GPR. A concrete specimen used for this study has a 25mm diameter steel bar and it's dimensions are 1,000 mm (L)× 1,000 mm(W)×280 mm(D). The advantages and limitations of GPR in these applications for concrete are also discussed.

  • PDF

An Experimental Study on the Bond Characteristics of Glass Fiber Reinforced Polymer Rebar (GFRP Rebar의 부착성능에 관한 실험적 연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;Choi Ki-Sun;Kim Hyeong-Yeol;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.124-127
    • /
    • 2004
  • This study is to investigate the bond characteristics of glass fiber reinforced polymer(GFRP) reinforcing bars in concrete by pullout test experimentally. Three different types of GFRP bars with different surface deformations were considered in this study. Also, standard deformed steel reinforcing bar with or without epoxy-coating were included for the comparisons of bond strength. All test procedures including specimens preparation, test apparatus and measuring devices were made according to the recommendation of CSA(Canadian Standards Association) Standard S806-02. From the test results, it was found that small surface indentations contributed to increase the bond strength of GFRP bar significantly. Based on the limited test results till now, the bond strength of GFRP bar with sand-coated deformation commercially available in foreign market is around $80\%$ of that of steel deformed bars.

  • PDF

Repeated Loading Tests of Reinforced Concrete Beams Containing Headed Shear Reinforcement (Headed Shear Bar를 사용한 콘크리트 보의 반복 하중 실험)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.512-517
    • /
    • 2003
  • The repeated loading responses of four shear-critical reinforced concrete beams, with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}C$ standard hooks, having free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups, with improved ductility, larger energy adsorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened, resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

  • PDF