• Title/Summary/Keyword: Reinforced slopes

Search Result 90, Processing Time 0.024 seconds

An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)

  • Ghanbari, Ali;Khalilpasha, Abbas;Sabermahani, Mohsen;Heydari, Babak
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.143-164
    • /
    • 2013
  • Calculation of seismic displacements in reinforced slopes plays a crucial role in appropriate design of these structures however current analytical methods result indifferent values for permanent displacements of the slope. In this paper, based on limit equilibrium and using the horizontal slices method, a new formulation has been proposed for estimating the seismic displacements of a reinforced slope under earthquake records. In this method, failure wedge is divided into a number of horizontal slices. Assuming linear variations for tensile forces of reinforcements along the height of the slope, the coefficient of yield acceleration has been estimated. The simplicity of calculations and taking into account the frequency content of input triggers are among the advantages of the present formulation. Comparison of the results shows that the yield acceleration calculated by the suggested method is very close to the values resulted from other techniques. On the other hand, while there is a significant difference between permanent displacements, the values obtained from the suggested method place somehow between those calculated by the other techniques.

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

Application of Continuous Fiber Soil Reinforcement System in Riparian Slopes (연속섬유보강토공법의 하천구역 적용사례에 관한 연구)

  • Koh, Jeung-Hyun;Hur, Young-Jin;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.3
    • /
    • pp.169-176
    • /
    • 2011
  • The purpose of this study is to examine the ecologically suitable restoration characteristics in riparian slopes constructed by continuous fiber soil reinforced system (Geofiber system) which does not contain the concrete materials. The findings are as follows : (1) as the tested soil was not washed away by rainfalls and floods, Geofiber could replace the concrete wall and gravity stone net bag technique from the civil engineering structural point of view; (2) after one year of the construction, it was monitored that land cover ratio was 80-90%, which indirectly shows that vegetation is safely maintained; and (3) at the same time, 5-8 flora species were found in each test grid and more importantly dominant species have been moved from alien species to native herbaceous plants. From the above findings, Geofiber system is recommendable to restore the riparian slopes in terms of stability and natural landscape points. However, a long term monitering is needed considering flora succession process in a given environment as well as suitability tests should be carried out through the comparative investigations in other environments.

Comparison and Evaluation of Two-part Wedge Analysis for Reinforced Slopes with Centrifuge Test (보강사면(補强斜面)에 대한 Centrifuge Test와 Two-part Wedge 해석(解析)의 비교평가(比較評價))

  • Seo, In-Shik;Lee, Chin;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 1999
  • Results of two-part wedge analysis and centrifuge test executed by Zornberg et al. were compared for geotextile-reinforced slope stability. For two-part wedge analysis results of two cases, a frictional case considering internal friction of soil as interwedge friction and a nonfrictional case not considering, were also compared and evaluated. The analysis was based on limit equilibrium and two-part wedge was divided into slices as many as the number of geotextiles to obtain a maximum tension distribution mobilized in reinforcements. A significant observation was that the distribution was a triangular shape with maximum tension of geotextile at a transit point of interwedge. The number of geotextiles and failure surface of frictional case were reasonable and more comparable to results of the centrifuge tests than those of nonfrictional case. Therefore it can be said that two-part wedge analysis is recommendable for design analysis of reinforced slopes if an interwedge angle is regarded to be an angle of internal friction in soil.

  • PDF

The Design Charts for Soil Nailing Slopes Through Limit Equilibrium Method (한계평형해석을 사용한 Soil Nailing보강사면의 설계도표의 제안)

  • Kim, Hak-Moon;Jang, Kyung-Jun;Seo, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2794-2802
    • /
    • 2009
  • Soil nailing method is widely used in reinforcing slopes and excavating earth. The analysis of nail-reinforced slopes, generally require complicated computer programs. The purpose of this paper is suggest, Soil stability Chart for nailed slopes which are very useful for pre-design, rapidly design, and final check. Three slope types, three nail lengths and three nail angles are selected for the stability analysis by using limit equilibrium method form Bishop and French. From the above results, this study propose the reinforced design charts for examine the necessity of reinforcement can be examined. The suggested stability chart and Taylor's Slope Stability Chart, showed similar safety factors. This Soil Nailing design charts can provide the solutions for necessity of reinforcement, economical of nail's length ratio and installation angle as well.

A Case Study on Design and Consruction for Cut Slope in Pa-ju Local Industrial Complex (파주 지방산업단지 대절토사면 설계 및 시공사례)

  • Lee, Jong-Ku;Kwon, Min-Seok;Paik, Young-Shik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.210-220
    • /
    • 2005
  • We have analyzed the stability for cut-slopes at main street 3-2 line section in Pa-ju local industrial complex. After studying an additional boring test, laboratory test and face mapping etc., we have determined the extent of reinforcement, slope inclinations and soil strength parameter from the analysis of test results. After changing the inclination of slopes for ground limit and carrying out the analysis of slope stability, we applied the Mass Nailing Method to the site because of need for reinforcement to soil and weathered rock slopes. In slope for soft and hard rock sections, we also reinforced the sections that are difficult to obtain the safety without reinforcement in alteration zone.

  • PDF

Reinforcing effect of vetiver (Vetiveria zizanioides) root in geotechnical structures - experiments and analyses

  • Islam, Mohammad S.;Shahin, Hossain M.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.313-329
    • /
    • 2013
  • Vetiver grass (Vetiveria zizanioides) is being effectively used in many countries to protect embankment and slopes for their characteristics of having long and strong roots. In this paper, in-situ shear tests of the ground with the vetiver roots have been conducted to investigate the stabilization properties corresponding to the embankment slopes. Numerical analyses have also been performed with the finite element method using elastoplastic subloading $t_{ij}$ model, which can simulate typical soil behavior. It is revealed from field tests that the shear strength of vetiver rooted soil matrix is higher than that of the unreinforced soil. The reinforced soil with vetiver root also shows ductile behavior. The numerical analyses capture well the results of the in-situ shear tests. Effectiveness of vetiver root in geotechnical structures-strip foundation and embankment slope has been evaluated by finite element analyses. It is found that the reinforcement with vetiver root enhances the bearing capacities of the grounds and stabilizes the embankment slopes.

Behavior Characteristics of Composite Reinforced Earth with Improved Soil Surface and Geogrid-reinforced Backfill (지반개량재 전면토체와 지오그리드 보강 배면토체로 형성된 복합보강토의 거동특성)

  • Bhang, In-Hwang;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.27-34
    • /
    • 2016
  • Many steepened slopes have become increasingly advantageous because of the desire to increase land usage and decrease site development costs. The proven concept of tensile reinforcement allows construction of slopes with far steeper face angles than the soils natural angle. Steepened slope face reinforced with improved soil can increase land usage substantially while providing a natural appearance. The paper presents composite reinforced earth with improved soil surface and geogrid-reinforced backfill. For the stability of the steepened slope, the behavior of the composite reinforced earth are validated and verified by case study and numerical analysis. The case study has performed to investigate the deformation of reinforce soil slope for 14 months. Its horizontal behavior by general vertical load shows within the safe range (0.5% of structure height). As a result of numerical analysis and case study, the reinforcement effect of the steepened slope technique using improved soil is sufficient to be constructed as reinforced soil slope.