• Title/Summary/Keyword: Reinforced feature

Search Result 71, Processing Time 0.022 seconds

A novel coupled finite element method for hydroelastic analysis of FG-CNTRC floating plates under moving loads

  • Nguyen, Vu X.;Lieu, Qui X.;Le, Tuan A.;Nguyen, Thao D.;Suzuki, Takayuki;Luong, Van Hai
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.243-256
    • /
    • 2022
  • A coupled finite element method (FEM)-boundary element method (BEM) for analyzing the hydroelastic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) floating plates under moving loads is firstly introduced in this article. For that aim, the plate displacement field is described utilizing a generalized shear deformation theory (GSDT)-based FEM, meanwhile the linear water-wave theory (LWWT)-relied BEM is employed for the fluid hydrodynamic modeling. Both computational domains of the plate and fluid are coincidentally discretized into 4-node Hermite elements. Accordingly, the C1-continuous plate element model can be simply captured owing to the inherent feature of third-order Hermite polynomials. In addition, this model is also completely free from shear correction factors, although the shear deformation effects are still taken into account. While the fluid BEM can easily handle the free surface with a lower computational effort due to its boundary integral performance. Material properties through the plate thickness follow four specific CNT distributions. Outcomes gained by the present FEM-BEM are compared with those of previously released papers including analytical solutions and experimental data to validate its reliability. In addition, the influences of CNT volume fraction, different CNT configurations, water depth, and load speed on the hydroelastic behavior of FG-CNTRC plates are also examined.

Finite element bending and buckling analysis of functionally graded carbon nanotubes-reinforced composite beam under arbitrary boundary conditions

  • Belarbi, Mohamed-Ouejdi;Salami, Sattar Jedari;Garg, Aman;Hirane, Hicham;Amine, Daikh Ahmed;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.451-471
    • /
    • 2022
  • In the present paper, the static bending and buckling responses of functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) beam under various boundary conditions are investigated within the framework of higher shear deformation theory. The significant feature of the proposed theory is that it provides an accurate parabolic distribution of transverse shear stress through the thickness satisfying the traction-free boundary conditions needless of any shear correction factor. Uniform (UD) and four graded distributions of CNTs which are FG-O, FG-X, FG- and FG-V are selected here for the analysis. The effective material properties of FG-CNTRC beams are estimated according to the rule of mixture. To model the FG-CNTRC beam realistically, an efficient Hermite-Lagrangian finite element formulation is successfully developed. The accuracy and efficiency of the present model are demonstrated by comparison with published benchmark results. Moreover, comprehensive numerical results are presented and discussed in detail to investigate the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, and length-to-thickness ratio on the bending and buckling responses of FG-CNTRC beam. Several new referential results are also reported for the first time which will serve as a benchmark for future studies in a similar direction. It is concluded that the FG-X-CNTRC beam is the strongest beam that carries the lowest central deflection and is followed by the UD, V, Λ, and FG-O-CNTRC beam. Besides, the critical buckling load belonging to the FG-X-CNTRC beam is the highest, followed by UD and FG-O.

Deep learning-based post-disaster building inspection with channel-wise attention and semi-supervised learning

  • Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Abhishek Subedi;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.365-381
    • /
    • 2023
  • The existing vision-based techniques for inspection and condition assessment of civil infrastructure are mostly manual and consequently time-consuming, expensive, subjective, and risky. As a viable alternative, researchers in the past resorted to deep learning-based autonomous damage detection algorithms for expedited post-disaster reconnaissance of structures. Although a number of automatic damage detection algorithms have been proposed, the scarcity of labeled training data remains a major concern. To address this issue, this study proposed a semi-supervised learning (SSL) framework based on consistency regularization and cross-supervision. Image data from post-earthquake reconnaissance, that contains cracks, spalling, and exposed rebars are used to evaluate the proposed solution. Experiments are carried out under different data partition protocols, and it is shown that the proposed SSL method can make use of unlabeled images to enhance the segmentation performance when limited amount of ground truth labels are provided. This study also proposes DeepLab-AASPP and modified versions of U-Net++ based on channel-wise attention mechanism to better segment the components and damage areas from images of reinforced concrete buildings. The channel-wise attention mechanism can effectively improve the performance of the network by dynamically scaling the feature maps so that the networks can focus on more informative feature maps in the concatenation layer. The proposed DeepLab-AASPP achieves the best performance on component segmentation and damage state segmentation tasks with mIoU scores of 0.9850 and 0.7032, respectively. For crack, spalling, and rebar segmentation tasks, modified U-Net++ obtains the best performance with Igou scores (excluding the background pixels) of 0.5449, 0.9375, and 0.5018, respectively. The proposed architectures win the second place in IC-SHM2021 competition in all five tasks of Project 2.

Nonlinear Flexural Modeling of Prestressed Concrete Beams with Composite Materials (복합소재 프리스트레스트 콘크리트보의 비선형 휨 모델링)

  • ;;Naaman, Antoine
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.269-280
    • /
    • 1998
  • Recently, application of composite materials such as fiber reinforced concretes(FRCs) and fiber reinforced plastics(FRPs) in conjunction with conventional structural components has become one of the main research areas. A proper use of advanced composite materials requires understanding their resistance mechanism and failure mode when they are applied to structures or their components. Particular considerations are given in this research to develop an analytical model which can predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beams possibly having layers of different cementitious composite matrices in a section and/or FRP tendons. The block concept is used, which can be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiply sliced layers in a section. In order to find a particular deflection point of a beam under load, solutions to the 2N-variables are found numerically by using approximate N-force equilibrium equations and N-moment equilibirum equations. The model is shown to successfully predict the flexual behavior of variously reinforced bonded and unbonded prestressed concrete beams. The model is also successful in simulating a gradually increasing load after sudden drop inload resistance due to fracture of one or more FRP tendons. This feature is useful in tracing the overall load-deflection response of a beam prestressed with brittle FRP tendons.

FEM-based Seismic Reliability Analysis of Real Structural Systems (실제 구조계의 유한요소법에 기초한 지진 신뢰성해석)

  • Huh Jung-Won;Haldar Achintya
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.171-185
    • /
    • 2006
  • A sophisticated reliability analysis method is proposed to evaluate the reliability of real nonlinear complicated dynamic structural systems excited by short duration dynamic loadings like earthquake motions by intelligently integrating the response surface method, the finite element method, the first-order reliability method, and the iterative linear interpolation scheme. The method explicitly considers all major sources of nonlinearity and uncertainty in the load and resistance-related random variables. The unique feature of the technique is that the seismic loading is applied in the time domain, providing an alternative to the classical random vibration approach. The four-parameter Richard model is used to represent the flexibility of connections of real steel frames. Uncertainties in the Richard parameters are also incorporated in the algorithm. The laterally flexible steel frame is then reinforced with reinforced concrete shear walls. The stiffness degradation of shear walls after cracking is also considered. The applicability of the method to estimate the reliability of real structures is demonstrated by considering three examples; a laterally flexible steel frame with fully restrained connections, the same steel frame with partially restrained connections with different rigidities, and a steel frame reinforced with concrete shear walls.

Structrral Analysis of Bridge Pier with 40MPa High Strength Concrete (설계강도 40MPa 고강도 콘크리트를 적용한 교량 교각 구조물의 구조해석)

  • Hur, Jae-Hun;Yi, Sang-Keun;Gwak, Seok-Hwan;Huh, Suk-Bum;Park, Chang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.157-158
    • /
    • 2009
  • In this study, We analyze structural behavior feature of column under reinforced-bar and concrete strength and load conditions and analyze optimal column diameter and construction cost through parameter study. In case we use the 40MPa high strength concrete instead of 27MPa concrete in pier, the results show positive effect in appearance of pier and cost because of small column diameter and low construction cost. Also, practical effect is proved by applying this results in pier of Shin Hou Bridge on Hum-Sung ${\sim}$ Chung-Ju highway construction work.

  • PDF

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

A Study on the Composite Strengthening Effect in Metal Matrix Composites (단섬유 금속복합체에서의 복합강화효과에 관한연구)

  • 김홍건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.61-66
    • /
    • 1996
  • An overall feature to simulate composite behavior and to predict closed solution has been performed for the application to the stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite, the micromechanics analysis and finite element analysis (FEA) were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. Further, a micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites has been developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparions between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

Component deformation-based seismic design method for RC structure and engineering application

  • Han, Xiaolei;Huang, Difang;Ji, Jing;Lin, Jinyue
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.575-588
    • /
    • 2019
  • Seismic design method based on bearing capacity has been widely adopted in building codes around the world, however, damage and collapse state of structure under strong earthquake can not be reflected accurately. This paper aims to present a deformation-based seismic design method based on the research of RC component deformation index limit, which combines with the feature of Chinese building codes. In the proposed method, building performance is divided into five levels and components are classified into three types according to their importance. Five specific design approaches, namely, "Elastic Design", "Unyielding Design", "Limit Design", "Minimum Section Design" and "Deformation Assessment", are defined and used in different scenarios to prove whether the seismic performance objectives are attained. For the components which exhibit ductile failure, deformation of components under strong earthquake are obtained quantitatively in order to identify the damage state of the components. For the components which present brittle shear failure, their performance is guaranteed by bearing capacity. As a case study, seismic design of an extremely irregular twin-tower high rise building was carried out according to the proposed method. The results evidenced that the damage and anti-collapse ability of structure were estimated and controlled by both deformation and bearing capacity.

Improving the concrete quality and controlling corrosion of rebar embedded in concrete via the synthesis of titanium oxide and silica nanoparticles

  • Jundong Wu;Yan Cui
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Concrete is one of the most widely used structure materials. Concrete is like the motor of the construction industry. The remarkable feature of this Concrete is its cheapness and low energy consumption. Concrete alone does not show resistance against any force but only against compressive forces. Therefore, steel rebar product is used as a reinforcement and increase the strength of Concrete. It can be done by putting rebar in Concrete in different ways. Rebar rusting is one of the crucial symptoms that cause swift destruction in reinforced structures-factors such as moisture in concrete increase the steel corrosion rate. In most cases, it is difficult to compensate for the damage caused by the corrosion of base metals, so preventing corrosion will be much more cost-effective. Coatings made with nanotechnology can protect Concrete against external degradation factors to prevent water and humidity from penetrating the Concrete and prevent rusting and corrosion of the rebar inside. It prevents water penetration and contamination into the Concrete and increases the Concrete's quality and structural efficiency. In this research, silica and titanium dioxide nanoparticle coatings have been used due to their suitable electrical and thermal properties, resistance to oxidation, corrosion, and wear to prevent the corrosion of rebars in Concrete. The results of this method show that these nanoparticles significantly improve the corrosion resistance of rebars.