• Title/Summary/Keyword: Reinforced Generator

Search Result 21, Processing Time 0.022 seconds

Development of high speed coupling for 2MW class wind turbine (2MW급 대형 풍력발전기용 고속커플링 개발)

  • Son, Seung Deok;Lee, Hyoung Woo;Han, Jeong Young;Kim, Yong Won;Kang, Jong Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-268
    • /
    • 2014
  • This research introduces the structural design and the validation results of the flexible high speed coupling for 2MW class wind turbine which transmit and cut off torque between gear box and generator. The high speed coupling requires electrical insulation to prevent electrical surface damages on gear box. Therefore glass fiber reinforced plastics is applied to absorb the vibration and deformation of power train and to transmit required torque. Finite element analysis was performed to optimize the thickness and accumulation number of glass fiber reinforced plastics. Torque limiter which cut off the abnormal torque is designed in frictional disc type. The design of the coupling was validated with the performance test of prototype.

Application of SFRC on the Protection Structure(SPIN TESTER) (방호 구조물에 강섬유보강 콘크리트의 적용)

  • 이제방;이석홍;허택녕;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.521-526
    • /
    • 1997
  • The Spin Tester(High Speed Balancing and Overspeed Test Facility), which is designed for the quality control of turbine, generator, and rotors was supposed to be constructed with the use of Steel Fiber Reinforced Concrete(SERC) for reducing the risk of accident while operation. However, it was very existence of fiber concrete due to there are two major concern in the SFRC work: one is existence of fiber ball due to inhomogeneous mixing, the other is the segregation of the concrete materials. To avoid these possible problems, the S/a was controlled about 55% to reduce the segregation and the high range AE water reducing agent was used to maintain the slump over the value of 18cm. With these careful consideratons, the SFRC work was done successfully by only using regular equipments like pump car and vibrator.

  • PDF

A Fiber Model Based on Secondary Development of ABAQUS for Elastic-Plastic Analysis

  • Shi, Yan-Li;Li, Hua-Wei;Wang, Wen-Da;Hou, Chao
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1560-1576
    • /
    • 2018
  • With the aim to provide an efficient platform for the elastic-plastic analysis of steel structures, reinforced concrete (RC) structures and steel-concrete composite structures, a program iFiberLUT based on the fiber model was developed within the framework of ABAQUS. This program contains an ABAQUS Fiber Generator which can automatically divide the beam and column cross sections into fiber sections, and a material library which includes several concrete and steel uniaxial material models. The range of applications of iFiberLUT is introduced and its feasibility is verified through previously reported test data of individual structural members as well as planar steel frames, RC frames and composite frames subjected to various loadings. The simulation results indicate that the developed program is able to achieve high calculation accuracy and favorable convergence within a wide range of applications.

Characteristic Analysis of Modularized HTS Field Coils for a Superconducting Wind Power Generator According to Field Coil Structure (계자 코일 구조에 따른 초전도 풍력 발전기의 모듈화 된 HTS계자 코일의 특성 분석)

  • Tuvdensuren, Oyunjargal;Go, Byeong-Soo;Sung, Hae-Jin;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • High temperature superconducting (HTS) generators for wind power systems are attractively researched with the advantages of high efficiency and smaller size compared with conventional generator. However, the HTS generators have high Lorentz force problem, which acts on HTS field coils due to their high current density and magnetic field. This paper deals with characteristic analysis of the modularized HTS field coil for a 750 kW superconducting wind power generator according to field coil structure. The modularized HTS field coil structure was designed based on the electromagnetic and mechanical analysis results obtained using a 3D finite element method. The electromagnetic force of the module coil was also analyzed. As a result, the perpendicular and maximum magnetic fields of the HTS coils were 2.5 T and 3.9 T, respectively. The maximum stress of the supports was less than the allowable stress of the glass-fiber reinforced plastic material, and displacement was within the acceptable range. The design specifications and the results of the HTS module coil structure can be effectively utilized to develop large-scale superconducting wind power generators.

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

Evaluation on Decomposition Processes of Laundry wastewater produced from Steam Generator (증기발생기 세정폐액 처리 공정 평가)

  • 강덕원;이홍주;최영우;이두호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.78-82
    • /
    • 2003
  • For the decomposition of laundry wastewater containing Fe-EDTA produced from the steam generators in nuclear power plants, Supercritical Water Oxidation (SCWO) Process, Photocatalytic Oxidation (PO) Process, and Dielectric Barrier Discharge (DBD) Atmospheric Pressure Plasma Process were evaluated. Even though EDTA was converted over 99.98 % by the SCWO process, it was estimated that the countermeasure against corrosion of the equipment should be reinforced for the process stability. It was considered that the PO process is not appropriate for the decomposition of high concentrated laundry wastewater since the conversion ratio of EDTA was around 10 %. Finally, High efficiency of the decomposition of organic matter (methylene blue) was obtained using DBD process even low energy was supplied. However there is still room for the evaluation of EDTA decomposition in order that the DBD process should be applied for the field samples.

  • PDF

A study on the Insulation Condition Evaluation and Insulation Reinforced Method of Large Motors (대형모타 절연상태 판정기준 및 절연보강 방안 연구)

  • Kim, Young-Kyu;Park, Duk-Kyu;Song, Young-Cheol;Kim, Hyeon-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1912-1914
    • /
    • 2000
  • This is the first report of a series of field test result of large high voltage generator & motors. Major specimens were 6.6/13.2kV class hydroric power & pump motor that was installed and operated for public water service by KOWACO(KOrea WAter resources COperation). The capacity of specimen gene rater & motors were in range of several hundred kVA$\sim$50MVA. Until now, we get the 100 field test result by testing technique discribed in IEEE standards and Discharge map technique from Japanse manufactures. The test result was varied very wide range, and there was a tendency according to insulation material and manufacture.

  • PDF

Numerical Analysis and Experimental Measurement of Hygroscopic Warping Effects for Cellulose Fibres (셀룰로스 복합소재에서의 수분에 의한 뒤틀림 변형효과를 위한 수치해석적 실험적 연구)

  • Kim, Byeong-Sam;Kim, Ki-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.117-123
    • /
    • 2004
  • The prediction to the hydroscopic moisture warping behaviors is analyzed for cellulose-based laminates using a numerical method base on a modified classical laminate(MCL) theory for hygroscopic moisture deformations with cycling testing data. The experimental measurement of the interferometric hygroscopic warping effects, moisture generator, and curvature of cellulose reinforced epoxy laminates is studied under cyclic environmental conditions using a Moire interferometer coupled. Accurate determination of curvatures provides a description of dimensional stability evolution; the tools for validation of computational internal stress and for the warpage prediction in model safety.

Behavior of Lateral Resistance according to Embed Depth of Pile for the Wind Power Foundation Reinforced with Piles in the Rocky Layer (암반지반에서 말뚝으로 보강된 풍력발전 기초의 말뚝 근입깊이에 따른 수평저항력 거동)

  • Kang, Gichun;Kim, Dongju;Park, Jinuk;Euo, Hyunjun;Park, Hyejeong;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.49-56
    • /
    • 2022
  • This study conducted to obtain the lateral resistance of a wind power foundation reinforced with piles through an model experiment. In particular, the lateral resistance of the foundation was compared with the existing gravity-type wind power foundation by integrating the pile, the wind power generator foundation, and the rocky ground. In addition, changes in the lateral resistance and bending moment of the pile were analyzed by embeded depths of the pile. As a result, it was found that the lateral resistance increased with the depth of embedment of the piles. In particular, the pile's resistance increase ratio was 2.11 times greater in the case where the pile embedded up to the rock layer than the case where the pile was embedded into the riprap. It was found that the location of the maximum bending moment occurred at the interface between the wind turbine foundation and the riprap layer when the pile embeded to the rock layer. Through this, as the lateral resistance of the wind power foundation reinforced with piles is greater than that of the existing gravity-type wind power foundation, it is understood that it can be a more advantageous construction method in terms of safety.

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.