DOI QR코드

DOI QR Code

계자 코일 구조에 따른 초전도 풍력 발전기의 모듈화 된 HTS계자 코일의 특성 분석

Characteristic Analysis of Modularized HTS Field Coils for a Superconducting Wind Power Generator According to Field Coil Structure

  • 투고 : 2019.01.08
  • 심사 : 2019.02.26
  • 발행 : 2019.04.30

초록

풍력발전 시스템용 고온 초전도 (HTS) 발전기는 높은 효율과 기존 발전기에 비해 작은 크기로 제작이 가능한 이점을 가지고 있다. 그러나 고온 초전도 발전기는 높은 전류 밀도와 자기장으로 인해 HTS 계자 코일에 작용하는 로렌츠 힘에 따른 문제가 발생할 수 있다. 본 논문에서는 계자 코일 구조에 따른 750 kW 급 초전도 풍력 발전기에 대한 모듈화 된 HTS 계자 코일의 특성 분석을 다룬다. 모듈화 된 HTS 필드 코일의 구조는 3D 유한 요소법을 사용하여 얻은 전자기 및 기계 분석 결과를 기반으로 설계하였고 모듈 코일의 전자기력도 분석하였다. 그 결과, HTS 코일의 수직 자기장과 최대 자기장은 각각 2.5 T와 3.9 T로 나타났다. 지지대의 최대 응력은 유리 섬유 강화 플라스틱 재료의 허용 응력보다 작았으며, 변위는 허용 범위 이내로 발생하였다. HTS 모듈 코일 구조의 설계 사양 및 결과는 대용량 초전도 풍력 발전기 개발에 효과적으로 활용될 수 있다.

High temperature superconducting (HTS) generators for wind power systems are attractively researched with the advantages of high efficiency and smaller size compared with conventional generator. However, the HTS generators have high Lorentz force problem, which acts on HTS field coils due to their high current density and magnetic field. This paper deals with characteristic analysis of the modularized HTS field coil for a 750 kW superconducting wind power generator according to field coil structure. The modularized HTS field coil structure was designed based on the electromagnetic and mechanical analysis results obtained using a 3D finite element method. The electromagnetic force of the module coil was also analyzed. As a result, the perpendicular and maximum magnetic fields of the HTS coils were 2.5 T and 3.9 T, respectively. The maximum stress of the supports was less than the allowable stress of the glass-fiber reinforced plastic material, and displacement was within the acceptable range. The design specifications and the results of the HTS module coil structure can be effectively utilized to develop large-scale superconducting wind power generators.

키워드

SOJBB3_2019_v24n2_15_f0001.png 이미지

Fig. 1 Design process of the HTS module coil for superconducting generator

SOJBB3_2019_v24n2_15_f0002.png 이미지

Fig. 2 Structural design of the HTS module coil

SOJBB3_2019_v24n2_15_f0003.png 이미지

Fig. 3 Ic - B curves of HTS wire

SOJBB3_2019_v24n2_15_f0004.png 이미지

Fig. 4 (a) Magnetic field distribution and (b) perpendicular magnetic field of the 750 kW HTS generator

SOJBB3_2019_v24n2_15_f0005.png 이미지

Fig. 5 (a) Output voltage and (b) rated torque of the 750 kW HTS generator

SOJBB3_2019_v24n2_15_f0006.png 이미지

Fig. 6 (a) Directions and (b) amplitude of the tangential and radial forces of the HTS field coil for the 750 kW HTS generator

SOJBB3_2019_v24n2_15_f0007.png 이미지

Fig. 7 (a) Tangential and radial forces of the HTS module coil, (b) Maximum tangential and radial forces of the HTS module coil

SOJBB3_2019_v24n2_15_f0008.png 이미지

Fig. 8 (a) Maximum stress and (b) displacement of the HTS module coil

Table 1 Specifications of the 750 kW HTS generator

SOJBB3_2019_v24n2_15_t0001.png 이미지

Table 2 Characteristics of the superconducting 2G HTS wire

SOJBB3_2019_v24n2_15_t0002.png 이미지

Table 3.Table 3 Detail specifications of the HTS module coil for the 750 kW HTS generator

SOJBB3_2019_v24n2_15_t0003.png 이미지

참고문헌

  1. Jung, H., Lee, C.G., Hahn, S.C. and Jung, S.Y., “Optimal design of a direct driven PM wind generator aimed at maximum AEP using Coupled FEA and Parallel Computing GA,” Journal of Electrical Engineering & Technology, Vol. 3, No. 4, pp. 552-558, 2008. https://doi.org/10.5370/JEET.2008.3.4.552
  2. Polinder, H., Van der Pijl, F.F.A., De Vilder, G.J. and Tavner, P.J., “Comparison of direct drive and geared generator concepts for wind turbines,” IEEE Transactions on Energy Conversion, Vol. 21, No. 3, pp. 725-733, 2006. https://doi.org/10.1109/TEC.2006.875476
  3. McDonald, A., "Structural analysis of low speed, high torque electrical generators for direct drive renewable energy converters," Ph.D. dissertation, School of Engineering & Electronics, University of Edinburgh, 2008.
  4. Young, G.P., Woo, S.L., Jeyull, L., Seunghyun, S., Young, J.H., Yoon, D.C. and Tae, K.K., "Operational characteristics of HTS coils with flux diverters in semipersistent mode under alternating magnetic field," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, Art. No. 5204105, 2016.
  5. Hiroyuki, O., Yutaka, T., Rashidul, M.Q. and Masaki, S., "Electromagnetic characteristics of 10 MW class superconducting wind turbine generators," IEEE Electrical Machine and System (ICEMS), pp.1303-1306, 2010.
  6. Klaus, G., Wilke, M., Frauenhofer, J., Nick, W. and Neumuller, H.W., "Design challenges and benefits of HTS synchronous machines," IEEE Power & Energy Society General Meeting, pp. 1-8, 2007.
  7. Oomen, M., Herkert, W., Bayer, D., Kummeth, P., Nick, W. and Arndt. T., "Manufacturing and test of 2G HTS coils for rotating machines: challenges, conductor requirements, realization," Physica C: Superconducting, Vol. 482, pp. 111-118, 2012. https://doi.org/10.1016/j.physc.2012.04.021
  8. Go, B.S., Sung, H.J., Choi, J., Park, M. and Yu, I.K., "Modularization of the HTS field coils for a large scale superconducting generator," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 3, Art. No. 5202905, 2016.
  9. Zhang, W., Xia, D. and Dong, Z., "Analysis of the strain and stress in the HTS generator at different operating conditions," IEEE Transactions on Applied Superconductivity, Vol. 27, No. 4, Art. No. 5203405, 2017.
  10. Weise, K., Schmidt, R., Carlstedt, M., Ziolkowski, M., Brauer, H. and Toepfer, H., "Optimal magnet design for Lorentz force eddy-current testing," IEEE Transactions on Magnetics, Vol. 51, No. 9, Art. No. 6201415, 2015.
  11. Wahl, L., Maas, S., Waldmann, D., Zurbes, A. and Freres, P., "Shear stresses in honeycomb sandwich plates: Analytical solution, finite element method and experimental verification," Journal of Sandwich Structure and Materials, Vol. 14, pp. 449-468, 2012. https://doi.org/10.1177/1099636212444655
  12. Kiruba, S.H., Swarn, K., Tabea A. and Ernst, W.S., "High power density supercoducting rotating machines development status and technology roadmap," Superconducting Science and Technology, Vol. 30, Art. No. 123002, 2017.
  13. Han, W. C. and Kiruba, S., "Force analysis of superconducting coils in actively shielded air-core superconducting machines" IEEE Transactions on Applied Superconductivity, Vol. 28, No. 5, Art. No. 5206808, 2018.
  14. Rouhollah, S. and Fatemeh, A., "Design of a combined screening and damping layer for a 10 MW class wind turbine HTS synchronous generator," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 6, Art. No. 5208312, 2018.
  15. http://www.theva.com/products (Accessed on November 9th, 2018)
  16. Go, B.S., Sung, H.J., Park, M. and Yu, I.K., "Structural design of a module coil for a 12 MW class HTS generator for wind turbine," IEEE Transactions on Applied Superconductivity, Vol. 27, No. 4, Art. No. 5202405, 2017.

피인용 문헌

  1. Conceptual Design of an HTS Motor for Future Electric Aircraft vol.25, pp.5, 2019, https://doi.org/10.9723/jksiis.2020.25.5.049