• Title/Summary/Keyword: Regulatory T cells

Search Result 317, Processing Time 0.026 seconds

Ribavirin Does Not Impair the Suppressive Activity of $Foxp3^+$ $ CD4^+$ $CD25^+$ Regulatory T Cells

  • Lee, Jeewon;Choi, Yoon Seok;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 2013
  • Ribavirin is an antiviral drug used in combination with pegylated interferon-${\alpha}$ (IFN-${\alpha}$) for the treatment of hepatitis C virus (HCV) infection. Recently, ribavirin was reported to inhibit the suppressive activity of regulatory T (Treg) cells. In the present study, we re-evaluated the effect of ribavirin on $CD4^+$ $CD4^+$ $CD25^+$ Treg cells from normal donors. First, we examined the expression of CTLA-4 and CD39, which are known to play a role in the suppressive function of Treg cells. We found that ribavirin treatment did not modulate the expression of CTLA-4 and CD39 in Treg cells. We also studied the effect of ribavirin on Treg cells in the presence of IFN-${\alpha}$; however, the expression of CTLA-4 and CD39 in Treg cells was not changed by ribavirin in the presence of IFN-${\alpha}$. Next, we directly evaluated the effect of ribavirin on the suppressive activity of Treg cells in the standard Treg suppression assay, by co-culturing CFSE-labeled non-Treg $CD4^+$ T cells with purified Treg cells. We found that ribavirin did not attenuate the suppressive activity of Treg cells. Taken together, while ribavirin reversed Treg cell-mediated suppression of effector T cells in the previous study, we herein demonstrate that ribavirin does not impair the suppressive activity of Treg cells.

Effect of Yonggak-san on the Immuno-regulatory and Apoptosis of Leukemia cells (용각산의 면역조절 및 백혈병세포의 아폽토시스에 미치는 효과)

  • Oh Chan Ha;Kwon Jin;Lee Kwang Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.932-937
    • /
    • 2002
  • The purpose of this research was to investigate the effect of Yonggak-san (YGS) on the immune reaction and apoptosis of leukemia cells. Administration of YGS(500 mg/kg) enhanced proliferation of splenocytes, thymocytes and mesenteric lymph node cells, and also YGS accelerated subpopulation of splenic Band T, thymic T and mesenteric lymph node-T lymphocytes, especially significantly increased CD4+-TH cells in BALB/c mice. YGS accelerated phagocytic activity and production of nitric oxide in peritoneal macrophages. YGS induced apoptosis of transplanted-L1210 cells in vivo, increased apoptotic cell death of cultured-L1210 and/or Molt4 human leukemia cells, decreased of mitochondrial transmembrane potential of both cells in vitro. These results suggest that YGS have an immune-regulatory effect and anti-cancer property.

Rheumatoid Fibroblast-like Synoviocytes Downregulate Foxp3 Expression by Regulatory T Cells Via GITRL/GITR Interaction

  • Kim, Sung Hoon;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.217-221
    • /
    • 2012
  • Fibroblast-like synoviocytes (FLS) colocalize with leukocyte infiltrates in rheumatoid synovia. Proinflammatory leukocytes are known to amplify inflammation by signaling to FLS, but crosstalk between FLS and regulatory T cells (Tregs) remains uncharacterized. To address this possibility, we cocultured FLS lines derived from arthritic mice with Tregs. FLS that expressed the ligand for glucocorticoid-induced TNF receptor family-related gene (GITR) decreased expression of Foxp3 and GITR in Tregs in a contact-dependent manner. This effect was abolished by blocking antibody to GITR. On the other hand, the Tregs caused the FLS to increase IL-6 production. These results demonstrate that inflamed FLS license Tregs to downregulate Foxp3 expression via the GITRL/GITR interaction while the Tregs induce the FLS to increase their production of IL-6. Our findings suggest that the interaction between FLS and Tregs dampens the anti-inflammatory activity of Tregs and amplifies the proinflammatory activity of FLS, thereby exacerbating inflammatory arthritis.

The expression of Foxp3 protein by retroviral vector-mediated gene transfer of Foxp3 in C57BL/6 mice (C57BL/6 마우스에서 Retroviral 벡터를 이용한 Foxp3 유전자의 도입에 의한 Foxp3 단백의 발현 양상)

  • Hwang, Insun;Ha, Danbee;Bing, So Jin;Jeon, Kyong-Leek;Ahn, Ginnae;Kim, Dae Seung;Cho, Jinhee;Lim, Jaehak;Im, Sin-Hyeog;Hwang, Kyu-Kye;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.3
    • /
    • pp.183-191
    • /
    • 2012
  • The maintenance of peripheral immune tolerance and prevention of chronic inflammation and autoimmune disease require $CD4^{+}CD25^{+}$ T cells (regulatory T cells). The transcription factor Foxp3 is essential for the development of functional, regulatory T cells, which plays a prominent role in self-tolerance. Retroviral vectors can confer high level of gene transfer and transgene expression in a variety of cell types. Here we observed that following retroviral vector-mediated gene transfer of Foxp3, transductional Foxp3 expression was increased in the liver, lung, brain, heart, muscle, spinal cord, kidney and spleen. One day after vector administration, high levels of transgene and gene expression were observed in liver and lung. At 2 days after injection, transductional Foxp3 expression level was increased in brain, heart, muscle and spinal cord, but kidney and spleen exhibited a consistent low level. This finding was inconsistent with the increase in both $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell frequencies observed in peripheral immune cells by fluorescence-activated cell-sorting (FACS) analysis. Retroviral vector-mediated gene transfer of Foxp3 did not lead to increased numbers of $CD4^{+}CD25^{+}$ T cell and $CD4^{+}Foxp3^{+}$ T cell. These results demonstrate the level and duration of transductional Foxp3 gene expression in various tissues. A better understanding of Foxp3 regulation can be useful in dissecting the cause of regulatory T cells dysfunction in several autoimmune diseases and raise the possibility of enhancing suppressive functions of regulatory T cells for therapeutic purposes.

Functions of Metallothionein Generating Interleukin-10-Producing Regulatory $CD4^{+}T$ Cells Potentiate Suppression of Collagen-Induced Arthritis

  • Huh, Sung-Jin;Lee, Kyu-Heon;Yun, Hye-Sun;Paik, Doo-Jin;Kim, Jung-Mogg;Youn, Jee-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.348-358
    • /
    • 2007
  • Metallothionein, a cysteine-rich stress response protein that is naturally induced by a variety of immunologic stressors, has been shown to suppress autoimmune disorders through mechanisms not yet fully defined. In the present study, we examined the underlying mechanisms by which metallothionein might mediate such regulation of autoimmunity. $Na\ddot{i}ve\;CD4^+$ T cells from metallothionein-deficient mice differentiated to produce significantly less IL-10, $TGF-{\gamma}$, and repressor of GATA, but more $IFN-{\gamma}$ and T-bet, when compared with those from wild-type mice. The levels of IL-4 and GATA-3 production were not different between the two groups of mice. Conversely, treatment with exogenous metallothionein during the priming phase drove $na\ddot{i}ve$ wild-type $CD4^+\;T$ cells to differentiate into cells producing more IL-10 and $TGF-{\beta}$, but less $IFN-{\gamma}$ than untreated cells. Metallothionein-primed cells were hyporesponsive to restimulation, and suppressive to T cell proliferation in an IL-10-dependent manner. Lymphocytes from metallothionein-deficient mice displayed significantly elevated levels of AP-1 and JNK activities in response to stimulation compared with those from wild-type controls. Importantly, transgenic mice overexpressing metallothionein exhibited significantly reduced susceptibility to collagen-induced arthritis and enhanced IL-10 level in the serum, relative to their nontransgenic littermates. Taken together, these data suggest that metallothionein is able to promote the generation of IL-10-and $TGF-{\beta}$-producing type 1 regulatory T-like cells by downregulating JNK-dependent AP-1 activity. Thus, metallothionein may play an important role in the regulation of Th1-dependent autoimmune arthritis, and may represent both a potential target for therapeutic manipulation and a critical element in the diagnostic assessment of disease potential.

Enforced Expression of CXCR5 Drives T Follicular Regulatory-Like Features in Foxp3+ T Cells

  • Kim, Young Uk;Kim, Byung-Seok;Lim, Hoyong;Wetsel, Rick A.;Chung, Yeonseok
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.130-139
    • /
    • 2017
  • $CXCR5^+$ T follicular helper (Tfh) cells are associated with aberrant autoantibody production in patients with antibody-mediated autoimmune diseases including lupus. Follicular regulatory T (Tfr) cells expressing CXCR5 and Bcl6 have been recently identified as a specialized subset of $Foxp3^+$ regulatory T (Treg) cells that control germinal center reactions. In this study, we show that retroviral transduction of CXCR5 gene in $Foxp3^+$ Treg cells induced a stable expression of functional CXCR5 on their surface. The Cxcr5-transduced Treg cells maintained the expression of Treg cell signature genes and the suppressive activity. The expression of CXCR5 as well as Foxp3 in the transduced Treg cells appeared to be stable in vivo in an adoptive transfer experiment. Moreover, Cxcr5-transduced Treg cells preferentially migrated toward the CXCL13 gradient, leading to an effective suppression of antibody production from B cells stimulated with Tfh cells. Therefore, our results demonstrate that enforced expression of CXCR5 onto Treg cells efficiently induces Tfr cell-like properties, which might be a promising cellular therapeutic approach for the treatment of antibody-mediated autoimmune diseases.

The Roles of Immune Regulatory Factors FoxP3, PD-1, and CTLA-4 in Chronic Viral Infection (만성 바이러스 감염에서 면역조절인자 FoxP3, PD-1 및 CTLA-4의 역할)

  • Cho, Hyosun
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.221-227
    • /
    • 2013
  • Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) cause viral infections that lead to chronic diseases. When they invade human body, virus specific T cells play an important role in antiviral effector functions including killing virus-infected cells and helping B cells to produce specific antibodies against viral proteins. The antiviral activity of T cells is usually affected by immune-regulatory factors that express on surface of T cells. Recently, many researchers have investigated the relationship between effector functions of virus specific T cells and characteristics of immune regulatory factors (e.g., CD28, CD25, CD45RO, FoxP3, PD-1, CTLA-4). In particular, Immune inhibitory molecules such as forkhead box P3 (FoxP3), programmed death-1 (PD-1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are associated with T-cell dysfunction. They are shown to be up-regulated in chronic viral diseases such as hepatitis B, hepatitis C or human immunodeficiency virus infection. Therefore, the positive correlation between viral persistence and expression of immune regulatory factors (FoxP3, PD-1, and CTLA-4) has been suggested. In this review, the roles of immune regulatory factors FoxP3, PD-1, and CTLA-4 were discussed in chronic viral diseases such as HIV, HBV, or HCV.

T Cell Receptor Signaling That Regulates the Development of Intrathymic Natural Regulatory T Cells

  • Song, Ki-Duk;Hwang, Su-Jin;Yun, Cheol-Heui
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.336-341
    • /
    • 2011
  • T cell receptor (TCR) signaling plays a critical role in T cell development, survival and differentiation. In the thymus, quantitative and/or qualitative differences in TCR signaling determine the fate of developing thymocytes and lead to positive and negative selection. Recently, it has been suggested that self-reactive T cells, escape from negative selection, should be suppressed in the periphery by regulatory T cells (Tregs) expressing Foxp3 transcription factor. Foxp3 is a master factor that is critical for not only development and survival but also suppressive activity of Treg. However, signals that determine Treg fate are not completely understood. The availability of mutant mice which harbor mutations in TCR signaling mediators will certainly allow to delineate signaling events that control intrathymic (natural) Treg (nTreg) development. Thus, we summarize the recent progress on the role of TCR signaling cascade components in nTreg development from the studies with murine model.

The Role of MicroRNAs in Regulatory T Cells and in the Immune Response

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.11-41
    • /
    • 2011
  • The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.

Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation

  • Kim, Hyo Kyeong;Jeong, Mi Gyeong;Hwang, Eun Sook
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.318-327
    • /
    • 2021
  • CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naive Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein argininemodifying enzymes in effector Th cells.