• Title/Summary/Keyword: Regulatory T cell

Search Result 304, Processing Time 0.021 seconds

High-dose lipopolysaccharide induced autophagic cell death in bovine mammary alveolar cells

  • Park, Jin-Ki;Yeo, Joon Mo;Cho, Kwanghyun;Park, Hyun-Jung;Lee, Won-Young
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • Bovine mammary epithelial (MAC-T) cells are commonly used to study mammary gland development and mastitis. Lipopolysaccharide is a major bacterial cell membrane component that can induce inflammation. Autophagy is an important regulatory mechanism participating in the elimination of invading pathogens. In this study, we evaluated the mechanism underlying bacterial mastitis and mammary cell death following lipopolysaccharide treatment. After 24 h of 50 ㎍/mL lipopolysaccharide treatment, a significant decrease in the proliferation rate of MAC-T cells was observed. However, no changes were observed upon treatment of MAC-T cells with 10 ㎍/mL of lipopolysaccharide for up to 48 h. Thus, upon lipopolysaccharide treatment, MAC-T cells exhibit dose-dependent effects of growth inhibition at 10 ㎍/mL and death at 50 ㎍/mL. Treatment of MAC-T cells with 50 ㎍/mL lipopolysaccharide also induced the expression of autophagy-related genes ATG3, ATG5, ATG10, ATG12, MAP1LC3B, GABARAP-L2, and BECN1. The autophagy-related LC3A/B protein was also expressed in a dose-dependent manner upon lipopolysaccharide treatment. Based on these results, we suggest that a high dose of bacterial infection induces mammary epithelial cell death related to autophagy signals.

Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages

  • Meyer J. Friedman;Haram Lee;June-Yong Lee;Soohwan Oh
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.5.1-5.28
    • /
    • 2023
  • Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and threedimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.

Overexpression of indoleamine 2,3-dioxygenase correlates with regulatory T cell phenotype in acute myeloid leukemia patients with normal karyotype

  • Arandi, Nargess;Ramzi, Mani;Safaei, Fatemeh;Monabati, Ahmad
    • BLOOD RESEARCH
    • /
    • v.53 no.4
    • /
    • pp.294-298
    • /
    • 2018
  • Background Production of immunosuppressive enzymes such as indoleamine 2,3-dioxygenase (IDO) is one of the strategies employed by hematologic malignancies, including acute myeloid leukemia (AML), to circumvent immune surveillance. Moreover, IDO has the ability to convert $CD4^+CD25^-$ conventional T cells into regulatory T cells (Tregs). In this study, we evaluated the expression of IDO in cytogenetically normal acute myeloid leukemia (CN-AML) patients and its correlation with the Treg marker, FOXP3, as well as clinical and laboratory parameters. Methods Thirty-seven newly diagnosed CN-AML patients were enrolled in our study along with 22 healthy individuals. The expression of the IDO and FOXP3 genes was analyzed by SYBR Green real-time PCR. Results Both IDO and FOXP3 were highly upregulated in CN-AML patients compared to control groups (P=0.004 and P=0.031, respectively). A positive correlation was observed between IDO and FOXP3 expression among AML patients (r=0.512, P=0.001). Expression of IDO and FOXP3 showed no significant correlation with laboratory parameters such as white blood cell and platelet counts, hemoglobin levels, bone marrow blast percentage, gender, and FLT3 mutation status (P>0.05). Conclusion Higher IDO expression in CN-AML patients may be associated with an increased Treg phenotype which may promote disease progression and lead to poor prognosis of CN-AML patients.

Effect of Yonggak-san on the Immuno-regulatory and Apoptosis of Leukemia cells (용각산의 면역조절 및 백혈병세포의 아폽토시스에 미치는 효과)

  • Oh Chan Ha;Kwon Jin;Lee Kwang Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.932-937
    • /
    • 2002
  • The purpose of this research was to investigate the effect of Yonggak-san (YGS) on the immune reaction and apoptosis of leukemia cells. Administration of YGS(500 mg/kg) enhanced proliferation of splenocytes, thymocytes and mesenteric lymph node cells, and also YGS accelerated subpopulation of splenic Band T, thymic T and mesenteric lymph node-T lymphocytes, especially significantly increased CD4+-TH cells in BALB/c mice. YGS accelerated phagocytic activity and production of nitric oxide in peritoneal macrophages. YGS induced apoptosis of transplanted-L1210 cells in vivo, increased apoptotic cell death of cultured-L1210 and/or Molt4 human leukemia cells, decreased of mitochondrial transmembrane potential of both cells in vitro. These results suggest that YGS have an immune-regulatory effect and anti-cancer property.

Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

  • Kim, Chang H.;Park, Jeongho;Kim, Myunghoo
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.277-288
    • /
    • 2014
  • T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.

Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity

  • Huh, Jin Young;Park, Yoon Jeong;Ham, Mira;Kim, Jae Bum
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.365-371
    • /
    • 2014
  • Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

Recent Advances in Cell Therapeutics for Systemic Autoimmune Diseases

  • Youngjae Park;Seung-Ki Kwok
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.10.1-10.17
    • /
    • 2022
  • Systemic autoimmune diseases arise from loss of self-tolerance and immune homeostasis between effector and regulator functions. There are many therapeutic modalities for autoimmune diseases ranging from conventional disease-modifying anti-rheumatic drugs and immunosuppressants exerting nonspecific immune suppression to targeted agents including biologic agents and small molecule inhibitors aiming at specific cytokines and intracellular signal pathways. However, such current therapeutic strategies can rarely induce recovery of immune tolerance in autoimmune disease patients. To overcome limitations of conventional treatment modalities, novel approaches using specific cell populations with immune-regulatory properties have been attempted to attenuate autoimmunity. Recently progressed biotechnologies enable sufficient in vitro expansion and proper manipulation of such 'tolerogenic' cell populations to be considered for clinical application. We introduce 3 representative cell types with immunosuppressive features, including mesenchymal stromal cells, Tregs, and myeloid-derived suppressor cells. Their cellular definitions, characteristics, mechanisms of immune regulation, and recent data about preclinical and clinical studies in systemic autoimmune diseases are reviewed here. Challenges and limitations of each cell therapy are also addressed.

CONSTRUCTING GENE REGULATORY NETWORK USING FREQUENT GENE EXPRESSION PATTERN MINING AND CHAIN RULES

  • Park, Hong-Kyu;Lee, Heon-Gyu;Cho, Kyung-Hwan;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.623-626
    • /
    • 2006
  • Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.

  • PDF

Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies

  • Jung-Hyun Park;Seung-Woo Lee;Donghoon Choi;Changhyung Lee;Young Chul Sung
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.9.1-9.21
    • /
    • 2024
  • The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.

Effect of Glycyrrhizae Radix on the Immune Responses(II) - Immuno-regulatory Action of Glycyrrhizin and Glycyrrhetinic Acid - (감초가 면역반응에 미치는 영향(II) - Glycyrrhizin 및 Glycyrrhetinic acid의 면역조절작용 -)

  • 한종현;오찬호;은재순
    • YAKHAK HOEJI
    • /
    • v.35 no.3
    • /
    • pp.174-181
    • /
    • 1991
  • These experiments were conducted to investigate the effects of glycyrrhizin(GL) and glycyrrhetinic acid(GA) on histamine synthesis, lymphocyte blastogenesis in C57BL/6J mice splenocytes, IL-1 production, $Ca^{2+}$ uptake by macrophage-like P388D$_{1}$ cells and plaque forming cell assay against SRBC. Histamine contents, lymphocyte blastogenesis, IL-1 activity, $Ca^{2+}$ uptake and plaque forming cell were determined by enzyme isotope method, [sup 3/H]-thymidine incorporation, C3H/HeJ mouse thymocytes proliferation, the addition of 5 $\mu$Ci/ml $^{45}$Ca$^{2+}$ to P388D$_{1}$, cell suspension and assay to sheep red blood cell, respectively. Cytotoxicity, which was expressed as 50% mortality, was occurred by the addition of GL(10$^{-3}$M) and GA(10$^{-4}$M). Histamine production in mouse spleen cell culture was significantly increased by the addition of 0.25 $\mu\textrm{g}$/ml of Con A, after 48 hour incubation. Con A dependent T-lymphocyte proliferation was also enhanced by the addition of 0.25 .mu.g/ml of Con A. The effects of GL on histamine contents and T-lymphocyte proliferation were significantly decreased at high dose (10$^{-5}$M), while IL-1 activity was remarkably suppressed by 10$^{-8}$~10$^{-4}$M of GL. $Ca^{2+}$ uptake was not changed, but antibody production was increased by GL(10 mg/kg). GA inhibited histamine contents at 10$^{-9}$~10$^{-7}$ and depressed Con A (0.25 $\mu\textrm{g}$/ml) dependent T-lymphocyte proliferation at 10$^{-7}$~10$^{-5}$M of GA, but increased suboptimal dose (Con A 0.1 $\mu\textrm{g}$/ml) at 10$^{-9}$~10$^{-7}$M of GA. IL-1 activity was suppressed by 10$^{-8}$~10$^{-4}$M of GA and $Ca^{2+}$ uptake was enhanced by 10$^{-9}$~10$^{-6}$ of GA, but antibody production was not changed by GA. From the above results, it is suggested that GL and GA have immuno-regulatory action. GL decreased cell-mediated immune response, and increased humoral immune response at high dose. On the other hand, low dose of GA enhanced cell-mediated immune response, while high doses of GA decreased humoral immune reaction.

  • PDF