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T cells are central players in the regulation of adaptive im-
munity and immune tolerance. In the periphery, T cell differ-
entiation for maturation and effector function is regulated by 
a number of factors. Various factors such as antigens, 
co-stimulation signals, and cytokines regulate T cell differ-
entiation into functionally specialized effector and regulatory 
T cells. Other factors such as nutrients, micronutrients, nu-
clear hormones and microbial products provide important en-
vironmental cues for T cell differentiation. A mounting body 
of evidence indicates that the microbial metabolites short- 
chain fatty acids (SCFAs) have profound effects on T cells 
and directly and indirectly regulate their differentiation. We 
review the current status of our understanding of SCFA func-
tions in regulation of peripheral T cell activity and discuss 
their impact on tissue inflammation.
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INTRODUCTION

Commensal microbiota functions not only to serve as targets 

of host immunity but also as active players in regulation of 

host physiology and immunity as a result of long-term co-

evolution of the host and microbes. T cells play central roles 

in the regulation of anti-microbial immunity and tissue 

inflammation. Most major T cell types are made in the thy-

mus, although extrathymic generation of some T cell subsets 

has been described (1,2). T cells are divided into the major 

TCR-αβ and minor γδ T cell groups. αβ T cells are highly 

heterogeneous and grouped into CD4
＋

 conventional T cells, 

CD8
＋

 conventional T cells, NKT cells, and other innate TCRα- 

expressing T cells such as mucosal-associated invariant T 

(MAIT) cells (3-6). CD4
＋

 conventional T cells are further div-

ided into FoxP3
＋

 regulatory and FoxP3
−

 T cells (7,8). FoxP3
−

 

CD4＋ T cells include various effector and regulatory T cells 

based on their cytokine phenotype (IFNγ, IL-17, IL-22, IL-4, 

IL-9, IL-10, IL-35, and/or LAP-TGFβ1) (6,9). These T helper 

cells include IFNγ＋ Th1 cells, IL-17/IL-22＋ Th17 cells, IL-4＋ 

Th2 cells, IL-9
＋

 Th9 cells, IL-21
＋

 T-FH cells, and IL-10/IL-35/ 

TGFβ1
＋

 Tregs (9-12). All of these T helper cell subsets are 

generated mainly in the periphery from naïve T cells made 

in the thymus. TCR repertoire and antigen specificity/affinity 

greatly influence T cell differentiation in the thymus and pe-

riphery (13,14). Co-stimulation signals such as CD28, ICOS, 

CTLA4, OX-40, and PD-1 signaling reciprocally regulate T cell 

differentiation and effector function (15-17). Cytokine milieu 

during T cell activation is crucial to generate specialized effec-

tor versus regulatory T cell subsets (6,9). A mounting body 
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of evidence indicates that nutrients and metabolites provide 

significant regulatory signals for T cell differentiation (18-23). 

Potentially important roles of gut microbial products such as 

short-chain fatty acids (SCFAs) have been recently docu-

mented (24-26). In this review, we will review the recent 

progress in our understanding of the roles of SCFAs in regu-

lating CD4
＋

 T helper cell differentiation and the impact of 

this process on tissue inflammation.

ORIGIN, PRODUCTION, TRANSPORT, AND 
RECEPTORS OF SCFAs

SCFAs refer to free fatty acids containing fewer than 6 car-

bons and therefore they have short aliphatic carbon-chains. 

Formic acid (C1), acetic acid (C2), propionic acid (C3), buty-

ric acid (C4), and valeric acid (C5) belong to the SCFA group. 

These metabolites are distinguished from longer fatty acids 

such as medium-chain (6-12 carbons) and long-chain free fat-

ty acids. Because they have relatively shorter hydrophobic 

chains as well as the hydrophilic carboxyl group, SCFAs are 

water soluble and readily absorbed or transported into cells. 

SCFAs are produced by gut microbiota as fermentation prod-

ucts, meaning that they are partially oxidized from sugar mol-

ecules under anaerobic conditions in the colon. Carbohydra-

tes are good sources of SCFAs but SCFAs can be made from 

other nutrients such as proteins and peptides albeit at low 

levels (27). These SCFA precursors, however, are easily de-

graded by host digestive enzymes in the upper alimentary 

tract and don’t reach the microbiota in the colon in significant 

amounts for SCFA production. In contrast, digestion-resistant 

oligosaccharides and fibers (e.g. oligofructose, inulin, pectin, 

and arabinoxylan) are good sources of SCFAs. Insoluble fi-

bers including cellulose and chitin, however, are not readily 

fermented by the microbiota and thus do not produce SCFAs 

at significant levels.

  While it is yet to be determined clearly through extensive 

bacterial isolation and metagenomics studies, available in-

formation indicates that bacteria species greatly differ in their 

genetic make-up of enzymes involved in SCFA production 

(28,29). Among SCFAs, C2 is relatively more readily produced 

than C3 and C4 by most enteric and acetogenic bacteria (30). 

Propionate can be produced by three pathways (i.e. succi-

nate, acrylate, and propanediol) from various sugar molecules 

such as pentoses, hexoses, and rhamnose (31). Bacteroidetes 

and some Firmicutes are good producers of C3 mainly 

through the succinate pathway. Production of C4 requires ad-

ditional enzymatic processes that extend acetyl-CoA with bu-

tyryl-CoA:acetate CoA-transferase, which is active in some 

bacteria including Roseburia, Eubacterium and Anaerostipes 

species and Faecalibacterium prausnitzii (27,32).

  The combined concentrations of SCFAs produced in the co-

lon reach ∼150 mM, making SCFAs the most abundant 

anions in the colon. SCFAs are absorbed in the colon and 

either utilized in colonocytes or transported via the portal 

vein to reach the blood circulation and other organs. The liv-

er and muscle are major systemic organs for SCFA metabo-

lism and consumption. SCFAs enter cells through passive dif-

fusion and carrier-mediated transportation through SMCT1/ 

SLC5a8 and MCT1/SLC16a1 (33-35). SMCT1 is a sodium-cou-

pled monocarboxylate transporter 1 for cell intake of SCFAs 

and related organic acids such as lactate and pyruvate (34). 

SMCT1 belongs to the SLC5 Na
＋

/glucose cotransporter gene 

family (33). MCT1 is an H
＋

-coupled transporter for SCFAs 

and related organic acids and it transports these molecules 

depending on the net chemical gradients for H
＋

 and mono-

carboxylates across the membrane (36). Expression of these 

transporters in the apical membrane of colonocytes, DCs, kid-

ney cells, and/or brain cells has been documented (Table I).

  SCFAs activate several G-protein-coupled cell surface re-

ceptors (GPCR). GPR41 and GPR43 are major receptors that 

can be activated by most SCFAs (37). Gut enteroendocrine 

cells highly express GPR41 and GPR43 (38,39). Other regular 

enterocytes express these receptors also at functional levels 

(38-41). GPR41 is also expressed in adipocytes, renal smooth 

muscle cells, enteric neuronal cells, and pancreatic cells 

(Table I) (42,43). The expression of GPR41 is co-regulated 

with GPR40, a receptor for medium and long-chain fatty 

acids, because their gene transcription is regulated by the 

same promoter (44). GPR43 is expressed by granulocytes and 

some myeloid cells (45-47). GPR109a, a receptor for niacin 

(also called nicotinic acid and vitamin B3), is a receptor also 

for C4 (48). GPR109a is expressed by gut epithelial cells, adi-

pocytes, macrophages and dendritic cells (Table I). Olfr78 is 

expressed in the kidney juxtaglomerular apparatus and is acti-

vated by C2 and C3 (49). However, T cells do not express 

these receptors at functionally significant levels (unpublished 

results) (24). Major cell types expressing these receptors are 

listed in Table I.

BASIC FUNCTIONS OF SCFAs IN THE BODY

SCFAs, also called volatile fatty acids because of their rela-
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Table I. Expression of SCFA transporters and cell surface receptors

Transporter/ 
receptor Cell types Known functions References

MCT1 (SLC16a1) Colonic epithelial cells A H＋-coupled transporter for SCFAs and related 
organic acids

(107-109)

SMCT1 (SLC5a8) Apical membrane of colonocytes, dendritic 
cells, kidney, retina, and brain

A Na(＋)-coupled transport of monocarboxylates 
and ketone bodies into various cell types 

(34, 86, 
110-115)

GPR41 (FFAR3) Enteroendocrine, enteroneuronal cells, 
sympathetic ganglia, adipocytes, 
pancreas, renal smooth muscle cells

A receptor for SCFAs. Regulation of gut hormone, 
leptin production, and sympathetic activation, 
Epithelial innate immunity

(39, 40, 42, 44, 
46, 72)

GPR43 (FFAR2) Enteroendocrine L cells, adipocytes, gut 
epithelial cells, leukocytes (eosinophils, 
basophils, neutrophils, monocytes, 
dendritic cells), mucosal mast cells, 
vascular endothelium in the myometrium

A receptor for SCFAs. Secretion of PYY and 
GLP-1, adipocyte development, adipogenesis, 
suppression of lipolysis, epithelial innate 
immunity, antitumor activity, anti-inflammatory 
effect, and Treg differentiation

(39, 40, 43, 46, 
47, 58, 
116-121)

GPR109a 
(NIACR1)

Adipocytes, dendritic cells, intestinal 
epithelial cells, macrophages, 
hepatocytes, epidermis in squamous 
carcinoma

A receptor for C4 and niacin. cAMP regulation, 
suppression of adipocyte lipolysis, HDL 
metabolism, DC trafficking, antitumor activity, 
and HDL metabolism 

(48, 122-126)

Olfr78 (MOL2.3, 
MOR18-2, 
PSGR, RA1c)

Large renal vessels, renal afferent arterioles, 
extrarenal vascular beds, prostate cancer, 
cells of the autonomic nervous system

A receptor for C2 and C3. Renin production from 
kidney juxtaglomerular apparatus for regulation 
of blood pressure

(49, 127, 128)

tively more volatile nature compared to longer fatty acids, 

have been studied for more than a century (50,51). These 

early observations linked SCFAs to diarrhea and ion balance 

in the intestine. SCFAs are physiologically important in the 

intestine as they regulate ion absorption and gut motility. 

Because SCFAs are absorbed first into colonic epithelial cells 

and can be metabolized in these cells, they profoundly affect 

the basic biology of intestinal epithelial cells. SCFAs, partic-

ularly C4, are used as the major energy source for colonic 

epithelial cells and regulate their gene expression, pro-

liferation, differentiation, and apoptosis (52). For example, 

SCFAs promote the production of mucin and gastrointestinal 

peptide (e.g. LL-37) (53), molecules important for gut barrier 

function.

  SCFAs condition intestinal epithelial cells to make them 

more readily respond to bacterial products (40). This function 

is important to prepare epithelial cells for mounting optimal 

innate immune responses to invading pathogens and com-

mensal bacteria, and therefore helps prevent chronic in-

testinal inflammatory responses to microbes and their 

products. In this regard, SCFAs have anti-inflammatory activ-

ity in regulating intestinal inflammation (54). Intestinal epi-

thelial cells express GPR41, GPR43, and GPR109a, which me-

diate a significant portion of the SCFA function (48,55-57). 

These GPCRs activate signaling processes such as RAS, pro-

tein kinase A, PI3K, and ERK1/2 for activation of transcription 

factors such as ATF2 (40,47,48,58,59). Activation of this path-

way is important for expression of key immune and in-

flammatory mediators such as IL-1, IL-6, TNF-α, CXCL1, and 

CXCL2. Another function of SCFAs is to activate GPR41 and 

GPR43 on secretory epithelial cells to produce glucagon-like 

peptide (GLP)-1 (60). Enteric neurons express GPR41 to 

sense SCFAs for regulation of gut motility (39). To support 

this, there is a high correlation in expression sites between 

SCFA receptors and gut endocrine hormones such as GLP-1, 

PYY, and neurotensin. Another major mechanism for the 

SCFA regulation of epithelial cells is mediated through in-

hibition of HDACs by SCFAs (61,62).

  Other cell types are also regulated by SCFAs. SCFAs induce 

the chemotaxis of neutrophils via activation of GPR43 (58,59) 

and regulate neutrophil degranulation (63,64). SCFAs also 

regulate macrophages and dendritic cells (DCs) (65,66).  

SCFAs suppresses NF-kB and the production of inflammatory 

cytokines such as IL-6 and TNF-α but increases IL-10 secre-

tion from macrophages (67). In contrast, increased C2 levels 

in alcoholism can increase the expression of inflammatory cy-

tokines in macrophages and even exacerbate the in-

flammatory response in the liver (68). Thus, the SCFA func-
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Figure 1. Regulation of T cells by SCFAs. SCFAs are actively produced 
by anaerobic microbiota in the colon as fermentation products of 
dietary materials. Most carbohydrates and proteins are completely 
digested and absorbed in the stomach and small intestine, and don’t
efficiently make SCFAs. SCFAs are mainly produced from digestion- 
resistant dietary fibers that reach the colon to be processed by the 
microbiota. SCFAs are absorbed or transported into colonocytes. They 
are metabolized in colonocytes or transported into blood circulation 
to reach other organs such as the liver and muscles. SCFAs exert their 
regulatory effects on epithelial cells, antigen presenting cells and T 
cells. Multiple mechanisms are involved including metabolic 
regulation, HDAC inhibition, and GPCR activation by SCFAs. These 
activation signals are combined to regulate T cell differentiation 
directly or indirectly. The direct effect of SCFAs on T cells enhances 
the generation of Th1 and Th17 cells in appropriate cytokine 
conditions, which is important to boost immunity to fight pathogens. 
SCFAs efficiently promote T cell production of IL-10, which is 
important to prevent inflammatory responses. It has been reported 
that SCFAs can expand FoxP3＋ T cells in certain activation 
conditions. SCFAs may exert their regulatory effects on developing 
DCs to generate DCs that are limited in their ability to present 
antigens and cytokines to make effector T cells. These effects are 
combined to create the overall tolerogenic gut environment with a 
strong barrier function.

tion in regulation of immune responses may be altered in 

pathological conditions. SCFAs increase satiety and recip-

rocally regulate adipogenesis and lipolysis (69-71). 

Adipocytes express GPR41 and are activated by SCFAs to pro-

duce leptin (42,43,72). Olfr78 activation promotes renin pro-

duction from the kidney to regulate blood pressure (49).

COMPLEX ROLES OF SCFAs IN REGULATION OF 
EFFECTOR VERSUS REGULATORY T CELLS

Early work on C4 revealed its regulatory effect on cytokine 

production by lymphocytes (73,74). C4 had regulatory effects 

on production of cytokines such as IL-2, IL-4, IL-5, IL-6, and 

IL-10 (75). Others observed that C4 induced Fas-upregulation 

and apoptosis in T cells (76). Smith et al. reported that mice 

fed with SCFAs had increased numbers of IL-10-producing 

FoxP3
＋

 T cells in the colon (25). The effect was specific for 

colonic FoxP3＋ T cells, and FoxP3＋ T cells in other organs 

were not expanded after SCFA administration. A mechanism 

provided by this group for the expanded colonic FoxP3
＋

 T 

cells was decreased HDAC expression and activity by SCFAs 

in a GPR43-depednent manner. SCFAs can enter cells through 

diffusion or carrier-mediated transport and thus do not neces-

sarily go through cell surface receptors. Moreover, T cells do 

not express GPR43 at significant levels and thus this mecha-

nism remains to be verified. Another group reported that C2 

and C3 can directly suppress HDACs and increase histone 

acetylation at the FoxP3 gene locus for increased transcription 

(20). Similarly, it was reported that Treg generation was in-

creased by SCFAs as a result of HDAC inhibition by SCFAs 

and histone H3 acetylation in key regulatory regions of the 

Foxp3 locus (77). In relation to these reports, inoculation of 

germ-free mice with SCFA-producing Clostridia groups in-

duced IL-10 and ICOS-expressing FoxP3
＋

 T cells (78). 

Overall, these studies suggest that SCFAs expand colonic 

Tregs for immune tolerance.

  Our group found that SCFAs can increase IL-10, but not 

necessarily FoxP3, expression in T cells (24). Interestingly, 

SCFA either positively or negatively regulate induced FoxP3＋ 

cells depending on the strength of T cell activation in vitro. 

In high T cell activation conditions, SCFAs can even suppress 

FoxP3＋ cell induction promoted by TGFβ1 and T cell 

activation. In contrast, SCFAs enhance FoxP3
＋

 cell induction 

at low T cell activation conditions. Independent of FoxP3 reg-

ulation, SCFAs increased IL-10 production in all T cell activa-

tion conditions (24). We observed that the FoxP3
＋

 T cells 

even in the colon were not reproducibly regulated by SCFA 

administration in vivo (unpublished results). These results im-

ply that FoxP3 induction by SCFAs may be regulated by in-

direct mechanisms through non-T cells. A rather surprising 

finding was that SCFAs facilitated naïve T cell differentiation 

into Th1 and Th17 cells in appropriate T cell polarization 

conditions. Thus, SCFAs can enhance both effector and regu-

latory T cells depending on the immunological milieu. In sup-

port of this, C2 administration via drinking water increased 

Th1 and Th17 cells in the intestine and secondary lymphoid 

tissues during C. rodentium infection (40). In the absence of 

infection, SCFAs increased gut IL-10＋ T cells in vivo, which 

would promote immune tolerance. It appears that SCFAs se-
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lectively promote only the right types of T cells required to 

handle specific immunological conditions (Fig. 1).

POTENTIAL MECHANISMS FOR THE REGULATORY 
EFFECT OF SCFAs ON T CELLS

Cells can be regulated by SCFAs largely in three different 

mechanisms (Fig. 1). The first mechanism involves the activa-

tion of SCFA-binding G-protein-coupled receptors (GPCRs) 

such as GPR41, GPR43, GPR109A, and Olfr78. GPCR signaling 

can regulate cell activation, proliferation, and differentiation. 

However, T cells do not express any of these receptors at 

significant levels, according to published information and un-

published microarray data. Thus, SCFA receptors are not like-

ly to be important for direct regulation of T cells by SCFAs. 

Another pathway is to regulate cell energy status and relevant 

signaling processes through integration of SCFAs into cellular 

metabolism. SCFAs can be converted to Acetyl-CoA and in-

tegrated into the citric acid cycle (Krebs cycle). Acetyl-CoA 

is a central molecule that stores energy in the molecule, 

which is eventually oxidized to CO2 for energy production. 

As the result, the cellular energy [ATP/ADP] level increases, 

and this change boosts mTOR activation (79). In T cells, acti-

vation of mTOR skews T cell differentiation into effector T 

cells such as Th1 and Th17 cells at the expense of FoxP3
＋

 

T cells (80). mTOR activation also promotes the generation 

of IL-10＋ cells (81). Thus, the SCFA-regulation of cell metabo-

lism and mTOR accounts for the increased generation of Th1, 

Th17 cells, and IL-10
＋

 cells. The third mechanism is mediated 

through the HDAC inhibitor activity of SCFAs (Fig. 1). All ma-

jor SCFAs such as C2, C3, C4 and C5 have HDAC inhibitor 

activity (24,82,83). Some regarded that C2 does not have the 

HDAC inhibitor activity but it has clear HDAC inhibitor activ-

ity at concentrations (∼10 mM) higher than C3 and C4 (∼1 

mM) (24). Moreover, C2 is maintained at relatively high con-

centrations in blood (∼1 mM). This HDAC inhibitor activity 

requires the transport of SCFAs into cells and enzymatic in-

hibition of HDACs. Class I/II HDACs are major targets of 

SCFA inhibition. While SCFAs do not suppress class III HDAC 

such as Sirt1, down-regulation of Sirt1 expression by SCFAs 

was reported (84). Thus, SCFAs may affect a broad range of 

HDACs for their regulatory effects. Because HDAC inhibition 

increases the acetylation of histone and other proteins, the 

impact of this activity is far reaching and affecting a number 

of genes and proteins. Physical interaction between HDACs 

and S6K has been reported (85), and S6K is a downstream 

effector molecule of the mTOR pathway. P70-S6 Kinase 1 

(S6K) is hyper-acetylated by SCFAs in T cells, leading to in-

creased mTOR activity in T cells (24).

  SCFAs can indirectly affect T cells through their effects on 

other cells that control T cell differentiation such as DCs (Fig. 

1). SCFAs suppress the development of bone marrow progen-

itors into myeloid DCs in vitro (86). It has been observed 

that SCFAs also inhibit functional maturation of DCs in vitro 

(66,86-90). For example, C4 suppressed the maturation of 

bone marrow-derived DCs and production of IL-12 but in-

creased the expression of IL-23p19 (89). Valproic acid, a 

branched short-chain fatty acid and potent HDAC inhibitor, 

suppressed the maturation of human DCs in vitro, inhibiting 

the up-regulation of T-cell activating molecules such as MHC 

II, CD80, CD86 and IL-12 (90). While the functional im-

portance is yet to be determined, a report indicates that C4 

increased CD1d at the expense of CD1a expression on devel-

oping human DCs (88). GPR109a activation affects colonic 

macrophages and DCs for generation of Tregs and IL-10-pro-

ducing T cells (91). This effect, however, is not solely due 

to C4, because GPR109a is a receptor for niacin as well. In 

this regard, niacin treatment suppressed colitis and colon can-

cer in a Gpr109a-dependent manner. Moreover, Gpr109a
−/−

 

colonic epithelial cells were defective in producing IL-18 in 

response to C4. More studies are required to separate the nia-

cin from SCFA effect in regulation of GPR109a. Overall, the 

published results indicate that the regulatory effects of SCFAs 

have the potential to steer DC development into tolerogenic 

DCs for promotion of immune tolerance. A caveat is that it 

remains to be fully determined if SCFAs would exert the same 

inhibitory effect on DCs in vivo.

REGULATION OF TISSUE INFLAMMATION BY SCFAs

The intestine is the first organ that encounters gut commensal 

bacteria-derived SCFAs. Therefore, SCFAs have been studied 

for decades for their effects on inflammatory bowel diseases 

(IBD). Despite some conflicting reports, high SCFA-producing 

conditions formed with high levels of dietary fibers are linked 

to decreased tissue inflammation in the intestine (92-94). Oral 

administration of C4 ameliorated T cell-induced colitis in lym-

phopenic mice (26). C4 administration attenuated inflam-

mation and mucosal lesions in dextran sodium sulfate (DSS)- 

induced colitis, an experimental model frequently used for ul-

cerative colitis (95). However, there is a conflicting report that 

C4 administration via drinking water worsened the colitis in-
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Figure 2. Regulation of tissue inflammation by SCFAs. SCFAs have 
the potential to regulate tissue inflammation through their effects on 
multiple cell types. The first cell type that is regulated by SCFAs is 
intestinal epithelial cells. SCFAs condition these cells to produce 
immune mediators that enhance the gut barrier function. Also, the 
response to pathogens and commensal bacteria is heightened by 
SCFAs during inflammatory responses. The next cell type that is 
affected is antigen presenting cells. SCFAs act on DCs to limit the 
expression of T cell-activating molecules such as MHC II molecules, 
co-stimulatory molecules, CCR7 and cytokines, leading to generation 
of tolerogenic T cells rather than inflammatory T cells. The tolero-
genic effect of SCFAs on DCs can lower inflammatory responses. 
SCFAs can directly affect naïve T cells to steer their differentiation 
into both effector and IL-10-producing T cells. Moreover, SCFAs 
attract neutrophils to the gut during immune responses. Together, the 
enhanced barrier function, T cell immunity, and neutrophil recruit-
ment help prevent infection by pathogens and invasion by com-
mensal bacteria. By the same token, the activating activity of SCFAs 
for the immune cells and epithelial cells may boost inflammatory 
responses, if not properly regulated.

duced by DSS (89). SCFAs also failed to regulate the acute 

colitis induced with 2,4,6-Trinitrobenzenesulfonic acid (TNBS) 

(96). These conflicting results may have been obtained due 

to differences in methods to induce inflammation and regi-

mens to treat the heterogeneous inflammation. To make the 

function of SCFAs even more complicated, both increased 

and decreased DSS-induced inflammation in GPR43-deficient 

mice has been reported (45,97). GPR43-deficient mice had 

exacerbated inflammation in animal models of colitis, arthritis 

and asthma (97). GPR43 may modulate gut inflammation, in 

part, through cytokine production by mononuclear cells (98). 

GPR43 and GPR41, expressed by tissue cells such as epithelial 

cells, are also important to prevent chronic inflammation in 

the intestine following C. rodentium infection (40). Thus, the 

available information suggests that SCFA receptors play an 

overall beneficial role in prevention of inflammation (Fig. 2). 

More work is required to identify the cell types and mecha-

nisms that mediate the beneficial effect of SCFAs in a SCFA 

receptor-dependent manner.

  In humans, C4 enemas had a small ameliorating effect on 

human colitis patients (99). Treatment of patients with distal 

ulcerative colitis with C4 (100 mM) was effective in ameliorat-

ing disease activity (100). Moreover, treatment of patients 

with mild to moderate distal ulcerative colitis with combined 

SCFA enemas (100 mL, twice daily enemas of sodium acetate 

80 mM, sodium propionate 30 mM, and sodium butyrate 40 

mM) were effective in ameliorating colitis (101). A similar 

therapeutic effect was observed in ∼50% of ulcerative colitis 

patients who were refractory to a rectal and oral therapy with 

5-aminosalicylic acid and corticosteroid (101). SCFAs im-

proved the efficacy of other treatments such as oral mesala-

zine therapy (102). There is a report that patients with mild 

to moderate ileocolonic Crohn's disease who were treated 

with 4 g/day C4 tablets for 8 weeks had decreased clinical 

activity (103). A caveat is that several large randomized stud-

ies found no significant effects of SCFA therapies on ulcer-

ative colitis patients (104,105). These mixed results indicate 

that SCFAs and their receptors may regulate inflammatory re-

sponses only in certain pathological conditions, ameliorating 

certain types of inflammatory responses while exacerbating 

other types of responses. Beyond inflammatory bowel dis-

eases, high fiber diets and SCFAs have suppressive effects on 

respiratory allergic diseases (106). Overall, SCFAs have the 

potential to work through multiple cell types, including T 

cells, to exert their regulatory effects on tissue inflammation 

(Fig. 2).

CONCLUDING REMARKS

The gut microbial metabolites SCFAs profoundly regulate T 

cell differentiation in the body. Because these metabolites are 

produced at high levels in the gut, the T cells in the intestine 

and gut-associated lymphoid tissues are an important cell tar-

get for regulation by SCFAs. SCFAs can be transported into 

the blood and have the potential to regulate T cell activity 

in systemic tissue sites as well. Beyond T cells, SCFAs regu-

late the function and phenotype of a number of immunologi-

cally important cell types such as epithelial cells, neutrophils, 

and antigen presenting cells. While the anti-inflammatory ac-

tivity of SCFAs has been emphasized, SCFAs can also promote 

the generation of effector T cells and enhance gut barrier 

function and innate immunity. All of these effects of SCFAs 

are important to maintain a healthy immune system and to 
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prevent inflammatory diseases. More studies are required to 

sort out the detailed mechanism of SCFA-mediated regulation 

of T cells and other immune cells. The current body of liter-

ature indicates that SCFAs are not a panacea for inflammatory 

diseases and may exacerbate certain types of tissue 

inflammation. Therefore, it is important to identify the types 

of cells, immune responses, tissue inflammation, and diseases 

that are highly responsive to SCFA-based therapies. 
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