• Title/Summary/Keyword: Regulatory Network

Search Result 316, Processing Time 0.023 seconds

The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C.;Oliveira, Ana Paula;Patil, Kiran Raosaheb;Nielsen, Jens
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.385-399
    • /
    • 2005
  • The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

Inhibitory Effect of Paeoniflorin on Fos-Jun-DNA Complex Formation and Stimulation of Apoptosis in HL-60 Cells

  • Kwon, Hae-Young;Kim, Kyoung-Su;Park, Se-Yeon;Lee, Dug-Keun;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.28-32
    • /
    • 2001
  • The Fos-Jun heterodimers are part of the regulatory network of gene expression and nuclear proteins encoded by proto-oncogenes. The activation of Fos-Jun is important in the transmission of the tumor-promoting signal from the extracellular environment to the nuclear transcription mechanism. To search for the inhibitors of the Fos-Jun DNA complex formation, several natural products were screened and water-soluble paeoniflorin reduced the binding activity of the Fos-Jun heterodimer. This active compound was purified by silica gel column chromatography and HPLC. The electrophoresis mobility shift assay and reverse-phase HPLC test showed that paeoniflorin reduced the AP-l function. The cytotoxic effect of paeoniflorin was observed in HL-60. These results indicate that paeoniflorin blocks the Fos-Jun heterodimer-binding site of the AP-l DNA and it also has cytotoxic effects on human leukemia cell lines.

  • PDF

Inhibition of the Calcineurin Pathway by Two Flavonoids Isolated from Miliusa sinensis Finet & Gagnep.

  • Lee, Won Jeong;Moon, Jae Sun;Kim, Young Tae;Bach, Tran The;Hai, Do Van;Kim, Sung Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1696-1700
    • /
    • 2016
  • In order to discover plant-derived signaling pathway inhibitors with antifungal properties, a two-component screening system utilizing the calcineurin and Hog1 mitogen-activated protein kinase pathways responsible for the virulence networks of Cryptococcus neoformans was employed, owing to the counter-regulatory actions of these pathways. Of the 1,000 plant extracts tested, two bioactive compounds from Miliusa sinensis were found to act specifically on the calcineurin pathway of C. neoformans. These compounds, identified as pashanone and 5-hydroxy-6,7-dimethoxyflavanone, exhibited potent antifungal activities against various human pathogenic fungi with minimum inhibitory concentration values ranging from 4.0 to >128 μg/ml.

Identifying Post-translational Modification Crosstalks for Breast Cancer

  • Tung, Chi-Hua;Shueng, Pei-Wei;Chu, Yen-Wei;Chu, Yen-Wei;Chen, Chian-Ying
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.111-120
    • /
    • 2017
  • Post-translational modifications (PTMs) of proteins play substantial roles in the gene regulation of cell physiological functions and in the generation of major diseases. However, the majority of existing studies only explored a certain PTM of proteins, while very few have investigated the PTMs of two or more domains and the effects of their interactions. In this study, after collecting data regarding a large number of breast cancer-related and validated PTMs, a sequence and domain analysis of breast cancer proteins was carried out using bioinformatics methods. Then, protein-protein interaction network-related tools were applied in order to determine the crosstalks between the PTMs of the proteins. Finally, statistical and functional analyses were conducted to identify more modification sites of domains and proteins that may interact with at least two or more PTMs. In addition to exploring the associations between the interactive effects of PTMs, the present study also provides important information that would allow biologists to further explore the regulatory pathways of biological functions and related diseases.

Role of Nucleotide-binding and Oligomerization Domain 2 Protein(NOD2) in the Development of Atherosclerosis

  • Kim, Ha-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.479-484
    • /
    • 2015
  • NOD2 (nucleotide-binding and oligomerization domain 2) was initially reported as a susceptibility gene for Crohn's disease, with several studies focused on elucidating its molecular mechanism in the progression of Crohn's disease. We now know that NOD2 is an intracellular bacterial sensing receptor, and that MDP-mediated NOD2 activation drives inflammatory signaling. Various mutations in NOD2 have been reported, with NOD2 loss of function being associated with the development of Crohn's disease and other autoimmune diseases. These results suggest that NOD2 not only has an immune stimulatory function, but also an immune regulatory function. Atherosclerosis is a chronic inflammatory disease of the arterial wall; its pathologic progression is highly dependent on the immune balance. This immune balance is regulated by infiltrating monocytes and macrophages, both of which express NOD2. These findings indicate a potential role of NOD2 in atherosclerosis. The purpose of this review is to outline the known roles of NOD2 signaling in the pathogenesis of atherosclerosis.

The Roles and Perspectives of Toll-Like Receptors and $CD4^+$ Helper T Cell Subsets in Acute Viral Encephalitis

  • Han, Young-Woo;Singh, Sunit K.;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.12 no.2
    • /
    • pp.48-57
    • /
    • 2012
  • Acute viral encephalitis caused by neurotrophic viruses, such as mosquito-borne flaviviruses, is an emerging and re-emerging disease that represents an immense global health problem. Considerable progression has been made in understanding the pathogenesis of acute viral encephalitis, but the immune-pathological processes occurring during the progression of encephalitis and the roles played by various molecules and cellular components of the innate and adaptive systems still remain undefined. Recent findings reveal the significant contribution of Toll-like receptors (TLRs) and regulatory $CD4^+$ T cells in the outcomes of infectious diseases caused by neurotrophic viruses. In this review, we discuss the ample evidence focused on the roles of TLRs and $CD4^+$ helper T cell subsets on the progression of acute viral encephalitis. Finally, we draw attention to the importance of these molecules and cellular components in defining the pathogenesis of acute viral encephalitis, thereby providing new therapeutic avenues for this disease.

Preclinical Efficacy and Mechanisms of Mesenchymal Stem Cells in Animal Models of Autoimmune Diseases

  • Lee, Hong Kyung;Lim, Sang Hee;Chung, In Sung;Park, Yunsoo;Park, Mi Jeong;Kim, Ju Young;Kim, Yong Guk;Hong, Jin Tae;Kim, Youngsoo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) are present in diverse tissues and organs, including bone marrow, umbilical cord, adipose tissue, and placenta. MSCs can expand easily in vitro and have regenerative stem cell properties and potent immunoregulatory activity. They inhibit the functions of dendritic cells, B cells, and T cells, but enhance those of regulatory T cells by producing immunoregulatory molecules such as transforming growth factor-${\beta}$, hepatic growth factors, prostaglandin $E_2$, interleukin-10, indolamine 2,3-dioxygenase, nitric oxide, heme oxygenase-1, and human leukocyte antigen-G. These properties make MSCs promising therapeutic candidates for the treatment of autoimmune diseases. Here, we review the preclinical studies of MSCs in animal models for systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, and experimental autoimmune encephalomyelitis, and summarize the underlying immunoregulatory mechanisms.

Heme Oxygenase-1 as a Potential Therapeutic Target for Hepatoprotection

  • Farombi, Ebenezer Olatunde;Surh, Young-Joon
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.479-491
    • /
    • 2006
  • Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-${\kappa}B$) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis.

Calcium/Calmodulin-Dependent Protein Kinase is Involved in the Release of High Mobility Group Box 1 Via the Interferon-${\beta}$ Signaling Pathway

  • Ma, Lijuan;Kim, Seon-Ju;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2012
  • Previously, we have reported that high mobility group box 1 (HMGB1), a proinflammatory mediator in sepsis, is released via the IFN-${\beta}$-mediated JAK/STAT pathway. However, detailed mechanisms are still unclear. In this study, we dissected upstream signaling pathways of HMGB1 release using various molecular biology methods. Here, we found that calcium/calmodulin-dependent protein kinase (CaM kinase, CaMK) is involved in HMGB1 release by regulating IFN-${\beta}$ production. CaMK inhibitor, STO609, treatment inhibits LPS-induced IFN-${\beta}$ production, which is correlated with the phosphorylation of interferon regulatory factor 3 (IRF3). Additionally, we show that CaMK-I plays a major role in IFN-${\beta}$ production although other CaMK members also seem to contribute to this event. Furthermore, the CaMK inhibitor treatment reduced IFN-${\beta}$ production in a murine endotoxemia. Our results suggest CaMKs contribute to HMGB1 release by enhancing IFN-${\beta}$ production in sepsis.

Oral Tolerance Increased the Proportion of CD8+ T Cells in Mouse Intestinal Lamina Propria

  • Cho, Kyung-Ah;Cha, Je-Eun;Woo, So-Youn
    • IMMUNE NETWORK
    • /
    • v.8 no.2
    • /
    • pp.46-52
    • /
    • 2008
  • Background: Oral tolerance is defined by the inhibition of immune responsiveness to a protein previously exposed via the oral route. Protein antigens exposed via the oral route can be absorbed through the mucosal surfaces of the gastrointestinal tract and can make physical contact with immune cells residing in the intestinal lamina propria (LP). However, the mechanisms of oral tolerance and immune regulation in the intestines currently remain to be clearly elucidated. Methods: In order to determine the effect of oral protein antigen intake (ovalbumin, OVA) on the intestinal LP, we assessed the expression profile of the T cell receptor and the co-receptors on the cells from the intestines of the tolerant and immune mouse groups. Results: We determined that the proportion of OVA-specific B cells and ${\gamma}{\delta}$ T cells had decreased, but the CD8${\alpha}{\beta}$ and D8${\alpha}{\alpha}$ T cells were increased in the LP from the tolerant group. The proportion of CD8+ T cells in the spleen did not evidence any significant differences between treatment groups. Conclusion: These results indicate that CD8+ T cells in the intestinal LP may perform a regulatory role following antigen challenge via the oral route.