• Title/Summary/Keyword: Regulatory B cell

Search Result 227, Processing Time 0.028 seconds

Optimized Internal Control and Gene Expression Analysis in Epstein-Barr Virus-Transformed Lymphoblastoid Cell Lines

  • Nam, Hye-Young;Kim, Hye-Ryun;Shim, Sung-Mi;Lee, Jae-Eun;Kim, Jun-Woo;Park, Hye-Kyung;Han, Bok-Ghee;Jeon, Jae-Pil
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.127-133
    • /
    • 2011
  • The Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) is one of the major genomic resources for human genetics and immunological studies. Use of LCLs is currently extended to pharmacogenetic studies to investigate variations in human gene expression as well as drug responses between individuals. We evaluated four common internal controls for gene expression analysis of selected hematopoietic transcriptional regulatory genes between B cells and LCLs. In this study, the expression pattern analyses showed that TBP (TATA box-binding protein) is a suitable internal control for normalization, whereas GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is not a good internal control for gene expression analyses of hematopoiesis-related genes between B cells and LCLs at different subculture passages. Using the TBP normalizer, we found significant gene expression changes in selected hematopoietic transcriptional regulatory genes (downregulation of RUNX1, RUNX3, CBFB, TLE1, and NOTCH2 ; upregulation of MSC and PLAGL2) between B cells and LCLs at different passage numbers. These results suggest that these hematopoietic transcriptional regulatory genes are potential cellular targets of EBV infection, contributing to EBV-mediated B-cell transformation and LCL immortalization.

Lactoferrin Induces Tolerogenic Bone Marrow-Derived Dendritic Cells

  • Hui-Won Park;Sun-Hee Park;Hyeon-Ju Jo;Tae-Gyu Kim;Jeong Hyun Lee;Seung-Goo Kang;Young-Saeng Jang;Pyeung-Hyeun Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.38.1-38.12
    • /
    • 2020
  • Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that initiate both T-cell responses and tolerance. Tolerogenic DCs (tDCs) are regulatory DCs that suppress immune responses through the induction of T-cell anergy and Tregs. Because lactoferrin (LF) was demonstrated to induce functional Tregs and has a protective effect against inflammatory bowel disease, we explored the tolerogenic effects of LF on mouse bone marrow-derived DCs (BMDCs). The expression of CD80/86 and MHC class II was diminished in LF-treated BMDCs (LF-BMDCs). LF facilitated BMDCs to suppress proliferation and elevate Foxp3+ induced Treg (iTreg) differentiation in ovalbumin-specific CD4+ T-cell culture. Foxp3 expression was further increased by blockade of the B7 molecule using CTLA4-Ig but was diminished by additional CD28 stimulation using anti-CD28 Ab. On the other hand, the levels of arginase-1 and indoleamine 2,3-dioxygenase-1 (known as key T-cell suppressive molecules) were increased in LF-BMDCs. Consistently, the suppressive activity of LF-BMDCs was partially restored by inhibitors of these molecules. Collectively, these results suggest that LF effectively causes DCs to be tolerogenic by both the suppression of T-cell proliferation and enhancement of iTreg differentiation. This tolerogenic effect of LF is due to the reduction of costimulatory molecules and enhancement of suppressive molecules.

G1 Arrest of the Cell Cycle by Onchungeum in Human Hepatocarcinoma Cells (온청음(溫淸飮)이 인체 간암세포의 세포주기 G1 Arrest에 미치는 영향)

  • Goo, In-Moo;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.821-828
    • /
    • 2008
  • Onchungeum, a herbal formula, which has been used for treatment of anemia due to bleeding, discharging blood and skin disease. In the present study, it was examined the effects of extract of Onchungeum (OCE) on the growth of human hepatocarcinoma cell lines Hep3B (p53 null type) and HepG2 (p53 wild type) in order to investigate the anti-proliferative mechanism by OCE. Treatment of Hep3B and HepG2 cells to OCE resulted in the growth inhibition in a dose-dependent manner, however Hep3B cell line exhibited a relatively strong anti-proliferative activity to OEC. Flow cytometric analysis revealed that OCE treatment in Hep3B cells caused G1 phase arrest of the cell cycle, which was associated with various morphological changes in a dose-dependent fashion. RT-PCR and immunoblotting data revealed that treatment of OCE caused the down-regulation of cyclin D1 expression, however the levels of cyclin E expression were not changed by OCE. The G1 arrest of the cell cycle was also associated with the induction of Cdk inhibitor p27 by OCE. Because the p53 gene is null in Hep3B cells, it is most likely that the induction of p21 is mediated through a p53-independent pathway. Moreover, p27 detected in anti-Cdk4 and anti-Cdk2 immunoprecipitates from the OCE-treated cells, suggesting that OCE-induced p27 protein blocks Cdk kinase activities by directing binding to the cyclin/Cdk complexes. Furthermore, OCE treatment potently suppresses the phosphorylation of retinoblastoma proteins and the levels of the transcription factor E2F-1 expression. Taken together, these results indicated that the growth inhibitory effect of OCE in Hep3B hepatoma cells was associated with the induction of G1 arrest of the cell cycle through regulation of several major growth regulatory gene products.

CD4+CD25+ Regulatory T Cells Selectively Diminish Systemic Autoreactivity in Arthritic K/BxN Mice

  • Kang, Sang Mee;Jang, Eunkyeong;Paik, Doo-Jin;Jang, Young-Ju;Youn, Jeehee
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • Although the arthritis symptoms observed in the K/BxN model have been shown to be dependent on the functions of T and B cells specific to the self antigen glucose-6-phosphate isomerase, less is known about the in vivo roles of $CD4^{+}CD25^{+}$ regulatory T($T_{reg}$) cells in the pathology of K/BxN mice. We determined the quantitative and functional characteristics of the $T_{reg}$ cells in K/BxN mice. These mice contained a higher percentage of $Foxp3^+\;T_{reg}$ cells among the $CD4^+$ T cells than their BxN littermates. These $T_{reg}$ cells were anergic and efficiently suppressed the proliferation of $na\ddot{i}ve$ $CD4^+$ T cells and cytokine production by effector $CD4^+$ T cells in vitro. Antibody-mediated depletion of $CD25^+$ cells caused K/BxN mice to develop multi-organ inflammation and autoantibody production, while the symptoms of arthritis were not affected. These results demonstrate that despite the inability of the $T_{reg}$ cells to suppress arthritis development, they play a critical role protecting the arthritic mice from systemic expansion of autoimmunity.

Quercetin Enhances Cisplatin Sensitivity of Human Osteosarcoma Cells by Modulating microRNA-217-KRAS Axis

  • Zhang, Xian;Guo, Qinggong;Chen, Jingtao;Chen, Zhaohui
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.638-642
    • /
    • 2015
  • Quercetin can suppress osteosarcoma cell growth and metastasis. However, other effects of quercetin on osteosarcoma remain largely unknown. This research aims to evaluate the effects of quercetin in combination with cisplatin as treatment for osteosarcoma and investigate its regulatory mechanism. Cell viability and apoptosis in 143B cell line were determined after treatment with quercetin and/or cisplatin. RT-PCR and Western blot analysis were performed to determine the RNA or protein expression levels. Moreover, transwell assay was used to evaluate metastasis. Furthermore, rescue experiments were performed to investigate the potential regulatory mechanism of the treatment. Results showed that quercetin with concentration that was equal to or greater than $10{\mu}M$ inhibited 143B proliferation, while $5{\mu}M$ quercetin enhanced the cisplatin sensitivity of 143B cells. Expression of miR-217 was upregulated after quercetin and/or cisplatin treatment, while its target KRAS was downregulated both at mRNA and protein levels. MiR-217 knockdown led to the loss of enhanced cisplatin sensitivity while miR-217 overexpression showed the opposite effects, indicating that quercetin regulated cisplatin sensitivity by modulating the miR-217-KRAS axis. In conclusion, $5{\mu}M$ quercetin enhanced the cisplatin sensitivity by modulating the miR-217-KRAS axis. This finding suggests that quercetin may be administered with cisplatin to improve the treatment for osteosarcoma.

PGC-Enriched miRNAs Control Germ Cell Development

  • Bhin, Jinhyuk;Jeong, Hoe-Su;Kim, Jong Soo;Shin, Jeong Oh;Hong, Ki Sung;Jung, Han-Sung;Kim, Changhoon;Hwang, Daehee;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.895-903
    • /
    • 2015
  • Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.

Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage

  • Ju Hwan Kim;Rajnikant Patel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.427-436
    • /
    • 2023
  • Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.

The Inactivation of ERK1/2, p38 and NF-kB Is Involved in the Down-Regulation of Osteoclastogenesis and Function by A2B Adenosine Receptor Stimulation

  • Kim, Bo Hyun;Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.752-760
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and $NF-{\kappa}B$ by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as c-Fos, TRAP, Cathepsin-K and NFATc1, induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and $NF-{\kappa}B$ by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity.

Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy

  • Kim, Gil-Ran;Choi, Je-Min
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.513-521
    • /
    • 2022
  • Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.

A Case of Canine Mammary Comedocarcinoma with Regulatory T Cell Infiltration

  • Siwon Jeong;Jiwoong Yoon;Woo-Jin Song;Jongtae Cheong;Young-min Yun;Gee Euhn Choi;Myung-Chul Kim
    • Journal of Veterinary Clinics
    • /
    • v.41 no.4
    • /
    • pp.215-222
    • /
    • 2024
  • An adult female dog was presented for evaluation of rapid growth of mammary gland masses. Complete blood count, serum biochemistry, and diagnostic imaging results were unremarkable. Fine needle aspirates of the mammary masses indicated mammary carcinoma characterized by large globoid cells with finely granular eosinophilic globules or Melamed-Wolinska-like bodies. A regional mastectomy was performed on the masses. Subsequent histopathologic examination of the surgically resected masses resulted in a diagnosis of mammary comedocarcinoma with nodal metastasis and distinct perivascular immune infiltrates, which were subject to immunohistochemical and flow cytometric immunophenotyping. Immunohistochemical examination confirmed the infiltration of CD3+ T and PAX5+ B lymphocytes. Flow cytometric analysis demonstrated tumor-infiltrating CD4+CD25+FOXP3+ regulatory T, CD8+ T, CD11b+ myeloid, and CD21+ B cells. Of note, paired flow cytometric analysis of peripheral blood and tumor tissues showed a preferential tumor infiltration of regulatory T and B cells. Approximately two months after the mastectomy, the tumor reoccurred at the surgery site. The dog died due to deteriorating conditions. We report a rare case of canine mammary comedocarcinoma, providing clinical, clinicopathologic, histologic, and immunophenotypic characteristics. Our case is valuable in providing a rationale for basic research that maps the immune landscape of mammary comedocarcinoma to identify key immune subsets for cancer progression.