DOI QR코드

DOI QR Code

PGC-Enriched miRNAs Control Germ Cell Development

  • Bhin, Jinhyuk (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Jeong, Hoe-Su (Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University) ;
  • Kim, Jong Soo (Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University) ;
  • Shin, Jeong Oh (Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University, College of Dentistry) ;
  • Hong, Ki Sung (Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University) ;
  • Jung, Han-Sung (Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University, College of Dentistry) ;
  • Kim, Changhoon (Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University) ;
  • Hwang, Daehee (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Kye-Seong (Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University)
  • Received : 2015.05.26
  • Accepted : 2015.07.08
  • Published : 2015.10.31

Abstract

Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.

Keywords

References

  1. Abe, K. (2007). Developmental program for pluripotential cells and primordial germ cells in mice. Tanpakushitsu Kakusan Koso 52, 2046-2053.
  2. Banisch, T.U., Goudarzi, M., and Raz, E. (2012). Small RNAs in germ cell development. Curr. Topics Dev. Biol. 99, 79-113. https://doi.org/10.1016/B978-0-12-387038-4.00004-5
  3. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  4. Bjork, J.K., Sandqvist, A., Elsing, A.N., Kotaja, N., and Sistonen, L. (2010). miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development 137, 3177-3184. https://doi.org/10.1242/dev.050955
  5. Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics19, 185-193. https://doi.org/10.1093/bioinformatics/19.2.185
  6. Chae, S., Ahn, B.Y., Byun, K., Cho, Y.M., Yu, M.H., Lee, B., Hwang, D., and Park, K.S. (2013). A systems approach for decoding mitochondrial retrograde signaling pathways. Sci. Signal. 6, rs4.
  7. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179. https://doi.org/10.1093/nar/gni178
  8. De Felici, M., Farini, D., and Dolci, S. (2009). In or out stemness: comparing growth factor signalling in mouse embryonic stem cells and primordial germ cells. Curr. Stem Cell Res. Ther. 4, 87-97. https://doi.org/10.2174/157488809788167391
  9. Dyce, P.W., Toms, D., and Li, J. (2010). Stem cells and germ cells: microRNA and gene expression signatures. Histol. Histopathol. 25, 505-513.
  10. Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102-114. https://doi.org/10.1038/nrg2290
  11. Fujimoto, H., Tadano-Aritomi, K., Tokumasu, A., Ito, K., Hikita, T., Suzuki, K., and Ishizuka, I. (2000). Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: Ceramide galactosyltransferase-deficient mice. J. Biol. Chem. 275, 22623-22626. https://doi.org/10.1074/jbc.C000200200
  12. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. and Enright, A.J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140-144. https://doi.org/10.1093/nar/gkj112
  13. Gupta, S., Read, D.E., Deepti, A., Cawley, K., Gupta, A., Oommen, D., Verfaillie, T., Matus, S., Smith, M.A., Mott, J.L., et al. (2012). Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis. 3, e333. https://doi.org/10.1038/cddis.2012.74
  14. Harris, T.A., Yamakuchi, M., Ferlito, M., Mendell, J.T., and Lowenstein, C.J. (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA 105, 1516-1521. https://doi.org/10.1073/pnas.0707493105
  15. Hayashi, K., Chuva de Sousa Lopes, S.M., Kaneda, M., Tang, F., Hajkova, P., Lao, K., O′Carroll, D., Das, P.P., Tarakhovsky, A., Miska, E.A., et al. (2008). MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3, e1738. https://doi.org/10.1371/journal.pone.0001738
  16. Honke, K., Hirahara, Y., Dupree, J., Suzuki, K., Popko, B., Fukushima, K., Fukushima, J., Nagasawa, T., Yoshida, N., Wada, Y., et al. (2002). Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc. Natl. Acad. Sci. USA 99, 4227-4232. https://doi.org/10.1073/pnas.032068299
  17. Huang, J.C., Babak, T., Corson, T.W., Chua, G., Khan, S., Gallie, B.L., Hughes, T.R., Blencowe, B.J., Frey, B.J., and Morris, Q.D. (2007). Using expression profiling data to identify human microRNA targets. Nat. Methods 4, 1045-1049. https://doi.org/10.1038/nmeth1130
  18. Huang, P., Gong, Y., Peng, X., Li, S., Yang, Y., and Feng, Y. (2010). Cloning, identification, and expression analysis at the stage of gonadal sex differentiation of chicken miR-363 and 363*. Acta Biochim. Biophys. Sin (Shanghai) 42, 522-529. https://doi.org/10.1093/abbs/gmq061
  19. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols 4, 44-57.
  20. Jaskiewicz, L., and Filipowicz, W. (2008). Role of Dicer in posttranscriptional RNA silencing. Curr. Top Microbiol. Immunol. 320, 77-97.
  21. Jessberger, R. (2008). New insights into germ cell tumor formation. Horm. Metab. Res. 40, 342-346. https://doi.org/10.1055/s-2008-1073168
  22. Joung, J.G., Hwang, K.B., Nam, J.W., Kim, S.J., and Zhang, B.T. (2007). Discovery of microRNA-mRNA modules via populationbased probabilistic learning. Bioinformatics 23, 1141-1147. https://doi.org/10.1093/bioinformatics/btm045
  23. Kane, N.M., Thrasher, A.J., Angelini, G.D., and Emanueli, C. (2014). Concise review: MicroRNAs as modulators of stem cells and angiogenesis. Stem Cells 32, 1059-1066. https://doi.org/10.1002/stem.1629
  24. Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S., and Plasterk, R.H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27-29. https://doi.org/10.1038/nmeth843
  25. Kondoh, G., Murata, Y., Aozasa, K., Yutsudo, M., and Hakura, A. (1991). Very high incidence of germ cell tumorigenesis (seminomagenesis) in human papillomavirus type 16 transgenic mice. J. Virol. 65, 3335-3339.
  26. Kucia, M., Machalinski, B., and Ratajczak, M.Z. (2006). The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol. Exp. (Wars) 66, 331-341.
  27. Lagos-Quintana, M., Rauhur, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853-858. https://doi.org/10.1126/science.1064921
  28. Lee, H.J., Suk, J.E., Patrick, C., Bae, E.J., Cho, J.H., Rho, S., Hwang, D., Masliah, E., and Lee, S.J. (2010). Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 285, 9262-9272. https://doi.org/10.1074/jbc.M109.081125
  29. Lee, S.I., Lee, B.R., Hwang, Y.S., Lee, H.C., Rengaraj, D., Song, G., Park, T.S., and Han, J.Y. (2011). MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proc. Natl. Acad. Sci. USA 108, 10426-10431. https://doi.org/10.1073/pnas.1106141108
  30. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. https://doi.org/10.1016/j.cell.2004.12.035
  31. Liu, Z., Yang, D., Xie, P., Ren, G., Sun, G., Zeng, X., and Sun, X. (2012). MiR-106b and MiR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell. Physiol. Biochem. 29, 851-862. https://doi.org/10.1159/000258197
  32. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  33. McLaren, A. (1992). Development of primordial germ cells in the mouse. Andrologia 24, 243-247.
  34. McLaren, A. (2000). Germ and somatic cell lineages in the developing gonad. Mol. Cell. Endocrinol. 163, 3-9. https://doi.org/10.1016/S0303-7207(99)00234-8
  35. McLaren, A. (2003). Primordial germ cells in the mouse. Dev. Biol. 262, 1-15. https://doi.org/10.1016/S0012-1606(03)00214-8
  36. Medeiros, L.A., Dennis, L.M., Gill, M.E., Houbaviy, H., Markoulaki, S., Fu, D., White, A.C., Kirak, O., Sharp, P.A., Page, D.C., et al. (2011). Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc. Natl. Acad. Sci. USA 108, 14163-14168. https://doi.org/10.1073/pnas.1111241108
  37. Olive, V., Jiang, I., and He, L. (2010). mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int. J. Biochem. Cell Biol. 42, 1348-1354. https://doi.org/10.1016/j.biocel.2010.03.004
  38. Pal, R., Totey, S., Mamidi, M.K., and Bhat, V.S. (2009). Propensity of human embryonic stem cell lines during early stage of lineage specification controls their terminal differentiation into mature cell types. Exp. Biol. Med. 234, 1230-1243. https://doi.org/10.3181/0901-RM-38
  39. Peng, X., Li, Y., Walters, K.A., Rosenzweig, E.R., Lederer, S.L., Aicher, L.D., Proll, S., and Katze, M.G. (2009). Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics10, 373. https://doi.org/10.1186/1471-2164-10-373
  40. Saunders, L.R., Sharma, A.D., Tawney, J., Nakagawa, M., Okita, K., Yamanaka, S., Willenbring, H., and Verdin, E. (2010). miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging 2, 415-431. https://doi.org/10.18632/aging.100176
  41. Schmid, R., Grellscheid, S.N., Ehrmann, I., Dalgliesh, C., Danilenko, M., Paronetto, M.P., Pedrotti, S., Grellscheid, D., Dixon, R.J., Sette, C., et al. (2013). The splicing landscape is globally reprogrammed during male meiosis. Nucleic Acids Res. 41, 10170-10184. https://doi.org/10.1093/nar/gkt811
  42. Sirotkin, A.V., Ovcharenko, D., Grossmann, R., Laukova, M., and Mlyncek, M. (2009). Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 219, 415-420. https://doi.org/10.1002/jcp.21689
  43. Takada, S., Berezikov, E., Choi, Y.L., Yamashita, Y., and Mano, H. (2009). Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos. RNA 15, 1507-1514. https://doi.org/10.1261/rna.1418309
  44. Tang, F. (2010). Small RNAs in mammalian germline: tiny for immortal. Differentiation 79, 141-146. https://doi.org/10.1016/j.diff.2009.11.002
  45. Tong, M.H., Mitchell, D.A., McGowan, S.D., Evanoff, R., and Griswold, M.D. (2012). Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol. Reprod. 86, 72. https://doi.org/10.1095/biolreprod.111.096313
  46. Tran, D.H., Satou, K., and Ho, T.B. (2008). Finding microRNA regulatory modules in human genome using rule induction. BMC Bioinform. 9 Suppl 12, S5.
  47. Wang, X. (2008). miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14, 1012-1017. https://doi.org/10.1261/rna.965408
  48. Watson, C.M., and Tam, P.P. (2001). Cell lineage determination in the mouse. Cell Struct Funct. 26, 123-129. https://doi.org/10.1247/csf.26.123
  49. Xu, F., Gao, Z., Zhang, J., Rivera, C.A., Yin, J., Weng, J., and Ye, J. (2010). Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the $SIRT1^{+/-}$ mice: a role of lipid mobilization and inflammation. Endocrinology 151, 2504-2514. https://doi.org/10.1210/en.2009-1013
  50. Zhang, Y., Hayashi, Y., Cheng, X., Watanabe, T., Wang, X., Taniguchi, N., and Honke, K. (2005). Testis-specific sulfoglycolipid, seminolipid, is essential for germ cell function in spermatogenesis. Glycobiology 15, 649-654. https://doi.org/10.1093/glycob/cwi043
  51. Zhou, B., Li, C., Qi, W., Zhang, Y., Zhang, F., Wu, J.X., Hu, Y.N., Wu, D.M., Liu, Y., Yan, T.T., et al. (2012). Downregulation of miR- 181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 55, 2032-2043. https://doi.org/10.1007/s00125-012-2539-8

Cited by

  1. The synergistic effect of maltose enhances the anti-melanogenic activity of acarbose vol.309, pp.3, 2017, https://doi.org/10.1007/s00403-017-1717-4
  2. Effects of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system-Based Deletion of miR-451 in Mouse Embryonic Stem Cells on Their Self-Renewal and Hematopoietic Differentiation vol.14, pp.2, 2017, https://doi.org/10.1007/s13770-017-0031-8
  3. Dynamics of miRNA transcriptome during gonadal development of zebrafish vol.7, 2017, https://doi.org/10.1038/srep43850
  4. Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05443-5
  5. Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase vol.137, pp.8, 2017, https://doi.org/10.1016/j.jid.2017.03.031
  6. MiR-202-5p is a novel germ plasm-specific microRNA in zebrafish vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-07675-x
  7. MicroRNA dynamics at the onset of primordial germ and somatic cell sex differentiation during mouse embryonic gonad development vol.24, pp.3, 2017, https://doi.org/10.1261/rna.062869.117
  8. Different Actions of Intracellular Zinc Transporters ZIP7 and ZIP13 Are Essential for Dermal Development vol.20, pp.16, 2019, https://doi.org/10.3390/ijms20163941
  9. The Importance of Small Non-Coding RNAs in Human Reproduction: A Review Article vol.13, pp.None, 2015, https://doi.org/10.2147/tacg.s207491
  10. Deficiency of the onco-miRNA cluster, miR-106b∼25 , causes oligozoospermia and the cooperative action of miR-106b∼25 and miR-17∼92 is required to maintain male fertility vol.26, pp.6, 2015, https://doi.org/10.1093/molehr/gaaa027
  11. microRNAs in the pathogenesis of non-obstructive azoospermia: the underlying mechanisms and therapeutic potentials vol.67, pp.5, 2021, https://doi.org/10.1080/19396368.2021.1951890
  12. Epigenetic transgenerational inheritance, gametogenesis and germline development† vol.105, pp.3, 2021, https://doi.org/10.1093/biolre/ioab085
  13. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation vol.15, pp.5, 2015, https://doi.org/10.1159/000520412