• 제목/요약/키워드: Regular wave

검색결과 518건 처리시간 0.021초

파-흐름 공존장내 잠제 주변에서 OLAFOAM에 의한 파랑특성의 수치해석 (Numerical Analysis on Wave Characteristics around Submerged Breakwater in Wave and Current Coexisting Field by OLAFOAM)

  • 이광호;배주현;안성욱;김도삼;배기성
    • 한국해안·해양공학회논문집
    • /
    • 제28권6호
    • /
    • pp.332-349
    • /
    • 2016
  • OLAFOAM은 파동역학의 시뮬레이션을 위하여 $OpenFOAM^{(R)}$을 확장한 강력한 CFD코드이며, $OpenFOAM^{(R)}$은 다양한 분야에서 각각 수치계산의 목적에 대응할 수 있도록 많은 Solver를 제공하고 있다. OLAFOAM의 기본방정식은 VARANS식에 기초하고, 수치기법으로는 유한체적법을 적용하며, 프로그램은 C++로 코딩되어 Linux운영체제에서 실행된다. 본 연구는 OLAFOAM을 이용하여 먼저 1) 단파와 규칙파하 투과성구조물에서 파의 변형, 2) 규칙파하 잠제에 의한 파의 변형 및 3) 흐름하 규칙파의 변형과 연직유속분포에 대해 기존의 각 실험결과와 비교 검토하여 OLAFOAM의 타당성을 검증하였다. 이로부터 지금까지 거의 검토되지 않은 규칙파와 흐름의 공존장에 설치된 투과성잠제에 대해 배후경사면을 불투과성 혹은 투과성으로 고려한 경우 흐름방향 등의 변화에 따른 잠제 주변에서 수위, 파고, 주파수스펙트럼, 쇄파, 평균유속 및 난류운동에너지 등의 변동특성을 면밀히 검토하였다. 결과로부터 흐름방향(순방향과 역방향)에 따른 파고변화는 난류운동에너지와 밀접한 관계를 가지는 것 등을 알 수 있었다.

ON THE APPROXIMATION BY REGULAR POTENTIALS OF SCHRÖDINGER OPERATORS WITH POINT INTERACTIONS

  • Galtbayar, Artbazar;Yajima, Kenji
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.429-450
    • /
    • 2020
  • We prove that wave operators for Schrödinger operators with multi-center local point interactions are scaling limits of the ones for Schrödinger operators with regular potentials. We simultaneously present a proof of the corresponding well known result for the resolvent which substantially simplifies the one by Albeverio et al.

파랑작용에 의해 부유식 방파제에서 발생하는 응력해석 (Numerical Analysis of the Stress on Floating Breakwater under Various Wave Conditions)

  • 조원철
    • 한국해양공학회지
    • /
    • 제18권6호
    • /
    • pp.29-36
    • /
    • 2004
  • Floating breakwaters have been recently studied to reduce the transmission ratio of wave energy. The numerical study shows how wave pressure and stress act on the rectangular floating breakwater under various regular wave conditions. In order to evaluate hydrodynamic pressure on the floating breakwater, the infinite element is applied to the linear wave diffraction and radiation problems. SAP2000, a structural analysis program, is used to evaluate stress on the floating breakwater.

Numerical simulations of two-dimensional floating breakwaters in regular waves using fixed cartesian grid

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.206-218
    • /
    • 2014
  • The wave attenuation by floating breakwaters in high amplitude waves, which can lead to wave overtopping and breaking, is examined by numerical simulations. The governing equations, the Navier-Stokes equations and the continuity equation, are calculated in a fixed Cartesian grid system. The body boundaries are defined by the line segment connecting the points where the grid line and body surface meet. No-slip and divergence free conditions are satisfied at the body boundary cell. The nonlinear waves near the moving body is defined using the modified marker-density method. To verify the present numerical method, vortex induced vibration on an elastically mounted cylinder and free roll decay are numerically simulated and the results are compared with those reported in the literature. Using the present numerical method, the wave attenuations by three kinds of floating breakwaters are simulated numerically in a regular wave to compare the performance.

수치 시뮬레이션을 이용한 동파력을 받는 벌집형 유공케이슨의 안정성 해석 (Stability Analysis of Honeycomb Slit-Caisson under Dynamic Wave Force using Numerical Simulation)

  • 우진호;나원배;강윤구
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.83-89
    • /
    • 2010
  • This study presents a stability analysis procedure for caisson structures and a case study for a honeycomb slit-caisson. CADMAS-SURF was used to calculate the wave pressures based on an irregular wave with a 50-year period and the data for three regular waves obtained from a target site. Then, the irregular and regular wave pressures were used to obtain the dynamic responses (stresses) of the caisson structure using an explicit time integration program, ANSYS/LS-DYNA. Finally, the DNV code was used for structural and fatigue stability analyses.

Performance of integrated vertical raft-type WEC and floating breakwater

  • Tay, Zhi Yung;Lee, Luke
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.39-61
    • /
    • 2022
  • Renewable energy such as wave energy has gained popularity as a means of reducing greenhouse gases. However, the high cost and lack of available sea space in some countries have hindered the deployment of wave energy converters (WEC) as alternative means of sustainable energy production. By combining WECs with infrastructures such as floating breakwaters or piers, the idea of electricity generated from WECs will be more appealing. This paper considers the integration of vertical raft-type WEC (commonly known as the vertical flap WEC) with floating breakwater as means to generate electricity and attenuate wave force in the tropical sea. An array of 25 WECs attached to a floating breakwater is considered where their performance and effect on the wave climate are presented. The effects of varying dimensions of the WEC and mooring system of the floating breakwater have on the energy generation are investigated. The integrated WECs and floating breakwater is subjected to both the regular and irregular waves in the tropical sea to assess the performance of the system. The result shows that the integrated vertical flap-floating breakwater system can generate a substantial amount of wave energy and at the same time attenuate the wave force effectively for the tropical sea when optimal dimensions of the WECs are used.

Higher-order Spectral Method for Regular and Irregular Wave Simulations

  • Oh, Seunghoon;Jung, Jae-Hwan;Cho, Seok-Kyu
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.406-418
    • /
    • 2020
  • In this study, a nonlinear wave simulation code is developed using a higher-order spectral (HOS) method. The HOS method is very efficient because it can determine the solution of the boundary value problem using fast Fourier transform (FFT) without matrix operation. Based on the HOS order, the vertical velocity of the free surface boundary was estimated and applied to the nonlinear free surface boundary condition. Time integration was carried out using the fourth order Runge-Kutta method, which is known to be stable for nonlinear free-surface problems. Numerical stability against the aliasing effect was guaranteed by using the zero-padding method. In addition to simulating the initial wave field distribution, a nonlinear adjusted region for wave generation and a damping region for wave absorption were introduced for wave generation simulation. To validate the developed simulation code, the adjusted simulation was carried out and its results were compared to the eighth order Stokes theory. Long-time simulations were carried out on the irregular wave field distribution, and nonlinear wave propagation characteristics were observed from the results of the simulations. Nonlinear adjusted and damping regions were introduced to implement a numerical wave tank that successfully generated nonlinear regular waves. According to the variation in the mean wave steepness, irregular wave simulations were carried out in the numerical wave tank. The simulation results indicated an increase in the nonlinear interaction between the wave components, which was numerically verified as the mean wave steepness. The results of this study demonstrate that the HOS method is an accurate and efficient method for predicting the nonlinear interaction between waves, which increases with wave steepness.

수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형 (Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal)

  • 최준우;백운일;윤성범
    • 한국해안해양공학회지
    • /
    • 제19권6호
    • /
    • pp.557-564
    • /
    • 2007
  • 타원형 수중천퇴가 있는 지형을 통과하며 변형하는 파랑을 실험한 Vincent and Briggs(1989)의 실험조건을 수치모의하여 규칙파 변형에 대한 파랑과 흐름의 상호작용 효과를 연구하였다. 수치모의를 위해 흐름모형 SHORECIRC와 파랑모형 REF/DIF 1 그리고 SHORECIRC와 파랑모형 SWAN을 결합한 모형과 파랑과 흐름을 동시에 계산하는 FUNWAVE를 이용하였다. 이 수치모의로 부터 수중천퇴상에서 발생된 쇄파류는 수중천퇴후면의 파집중현상을 방해하고, 파랑을 천퇴중심축의 바깥쪽으로 굴절시켜, 파고를 상대적으로 감소시키는 역할을 하는 것을 확인할 수 있었다. 두 결합모형의 수치모의 결과는 쇄파류의 영향을 고려하지 않는 파랑모형만의 결과보다 실험치와 일치하였으나, 중복파가 발생되는 경우 SWAN모형과 REF/DIF모형으로부터 계산되어지는 잉여응력(radiation stress)에 문제가 있다는 것을 알 수 있었다. 또한, FUNWAVE를 이용한 수치모의는 실험결과와 완벽히 일치하였다. 이는 파랑쇄파류의 파랑변형에 미치는 역할의 중요성을 확인시켜주는 것이다.