Konduru, Venkateswara Raju;Bharamgoudra, Manjula R
Journal of information and communication convergence engineering
/
제19권3호
/
pp.166-174
/
2021
A large volume of patient data is generated from various devices used in healthcare applications. With increase in the volume of data generated in the healthcare industry, more wellness monitoring is required. A cloud-enabled analysis of healthcare data that predicts patient risk factors is required. Machine learning techniques have been developed to address these medical care problems. A novel technique called the radix-trie-based Tanimoto kernel regressive infomax boost classification (RT-TKRIBC) technique is introduced to analyze the heterogeneous health data in the cloud to predict the health risks and send alerts. The infomax boost ensemble technique improves the prediction accuracy by finding the maximum mutual information, thereby minimizing the mean square error. The performance evaluation of the proposed RT-TKRIBC technique is realized through extensive simulations in the cloud environment, which provides better prediction accuracy and less prediction time than those provided by the state-of-the-art methods.
This paper presents an improved time series based damage detection approach with experimental verifications for detection, localization, and quantification of damage in shear-type structures under varying mass effects using output-only vibration data. The proposed method can be very effective for automated monitoring of buildings to develop proactive maintenance strategies. In this method, Auto-Regressive Moving Average models with eXogenous inputs (ARMAX) are built to represent the dynamic relationship of different sensor clusters. The damage features are extracted based on the relative difference of the ARMAX model coefficients to identify the existence, location and severity of damage of stiffness and mass separately. The results from a laboratory-scale shear type structure show that different damage scenarios are revealed successfully using the approach. At the end of this paper, the methodology limitations are also discussed, especially when simultaneous occurrence of mass and stiffness damage at multiple locations.
Journal of Information Technology Applications and Management
/
제25권4호
/
pp.157-169
/
2018
The purpose of this study was to examine the volatility of bitcoin, diagnose if bitcoin are a systematic risk asset, and evaluate their effectiveness by estimating market beta representing systematic risk using GARCH (Generalized Auto Regressive Conditional Heteroskedastieity) model. First, the empirical results showed that the market beta of Bitcoin using the OLS model was estimated at 0.7745. Second, using GARCH (1, 2) model, the market beta of Bitcoin was estimated to be significant, and the effects of ARCH and GARCH were found to be significant over time, resulting in conditional volatility. Third, the estimated market beta of the GARCH (1, 2), AR (1)-GARCH (1), and MA (1)-GARCH (1, 2) models were also less than 1 at 0.8819, 0.8835, and 0.8775 respectively, showing that there is no systematic risk. Finally, in terms of efficiency, GARCH model was more efficient because the standard error of a market beta was less than that of the OLS model. Among the GARCH models, the MA (1)-GARCH (1, 2) model considering non-simultaneous transactions was estimated to be the most appropriate model.
International Journal of Computer Science & Network Security
/
제21권1호
/
pp.192-200
/
2021
In the mid of the December 2019, the virus has been started to spread from China namely Corona virus. It causes fatalities globally and WHO has been declared as pandemic in the whole world. There are different methods which can fit such types of values which obtain peak and get flattened by the time. The main aim of the paper is to find the best or nearly appropriate modeling of such data. The three different models has been deployed for the fitting of the data of Coronavirus confirmed patients in Pakistan till the date of 20th November 2020. In this paper, we have conducted analysis based on data obtained from National Institute of Health (NIH) Islamabad and produced a forecast of COVID-19 confirmed cases as well as the number of deaths and recoveries in Pakistan using the Logistic model, Gompertz model and Auto-Regressive Integrated Moving Average Model (ARIMA) model. The fitted models revealed high exponential growth in the number of confirmed cases, deaths and recoveries in Pakistan.
최근 자연어처리는 대용량 코퍼스를 이용하여 언어 모델을 사전 학습하고 fine-tuning을 적용함으로 다양한 태스크에서 최고 성능을 갱신하고 있다. BERT기반의 언어 모델들은 양방향의 Transformer만 모델링 되어 있지만 BART는 양방향의 Transformer와 Auto-Regressive Transformer가 결합되어 사전학습을 진행하는 모델로 본 논문에서는 540MB의 코퍼스를 이용해 한국어 BART 모델을 학습 시키고 여러 한국어 자연어처리 태스크에 적용하여 성능 향상 있음을 보였다.
International Journal of Control, Automation, and Systems
/
제6권5호
/
pp.639-650
/
2008
Electricity price forecasting has become an integral part of power system operation and control. In this paper, a wavelet transform (WT) based neural network (NN) model to forecast price profile in a deregulated electricity market has been presented. The historical price data has been decomposed into wavelet domain constitutive sub series using WT and then combined with the other time domain variables to form the set of input variables for the proposed forecasting model. The behavior of the wavelet domain constitutive series has been studied based on statistical analysis. It has been observed that forecasting accuracy can be improved by the use of WT in a forecasting model. Multi-scale analysis from one to seven levels of decomposition has been performed and the empirical evidence suggests that accuracy improvement is highest at third level of decomposition. Forecasting performance of the proposed model has been compared with (i) a heuristic technique, (ii) a simulation model used by Ontario's Independent Electricity System Operator (IESO), (iii) a Multiple Linear Regression (MLR) model, (iv) NN model, (v) Auto Regressive Integrated Moving Average (ARIMA) model, (vi) Dynamic Regression (DR) model, and (vii) Transfer Function (TF) model. Forecasting results show that the performance of the proposed WT based NN model is satisfactory and it can be used by the participants to respond properly as it predicts price before closing of window for submission of initial bids.
This study aims at analyzing determinants of non-farming income activities of female farmers, and presenting how to support their participation in non-farming activities. The result of logistic regressive analysis whose subjects are female farmers in the Chungnam area indicates that human and economic capital variables that can predict non-farming income activity participation statistically significantly are persons at the age of 40s to 50s and female farmers who returned to the rural areas. Farming characteristic variables are households that receive subsidiary and participate in two different types of farming whose main farming is rice. The female farmers who spend longer hours doing household chores participate in non-farming income activities more actively. In terms of policy and on-site response variables, the interest in farming and farming businesses shows positive relation, and that of farming and community organization participation presents negative relation. These analysis results indicate that the local government must present the policy that can select non-farming income activity participation groups strategically. This study suggest that it is necessary to expand community centered-non-farming income activities, and to expand or make laws to support female farmer's participation in non-farming activities.
An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.
Celik, Ozan;Terrell, Thomas;Gul, Mustafa;Catbas, F. Necati
Structural Monitoring and Maintenance
/
제5권2호
/
pp.273-295
/
2018
In this study, an investigation of a damage detection methodology for global condition assessment is presented. A particular emphasis is put on the utilization of wireless sensors for more practical, less time consuming, less expensive and safer monitoring and eventually maintenance purposes. Wireless sensors are deployed with a sensor roving technique to maintain a dense sensor field yet requiring fewer sensors. The time series analysis method called ARX models (Auto-Regressive models with eXogeneous input) for different sensor clusters is implemented for the exploration of artificially induced damage and their locations. The performance of the technique is verified by making use of the data sets acquired from a 4-span bridge-type steel structure in a controlled laboratory environment. In that, the free response vibration data of the structure for a specific sensor cluster is measured by both wired and wireless sensors and the acceleration output of each sensor is used as an input to ARX model to estimate the response of the reference channel of that cluster. Using both data types, the ARX based time series analysis method is shown to be effective for damage detection and localization along with the interpretations and conclusions.
EEG signal is analyzed by two methods, analysis by visual inspection of EEG recording sheets and analysis by quantative method. Generally visual inspection method is used in the clinical field. But this method has its limitation because EEG signal is random signal. Therefore it is necessary to analyze EEG signals quantatively to obtain more precise and objective information of neural and brain. In this paper, power spectrum of EEG signal was estimated by AR(AutoRegressive) model in the frequency domain. This process is useful as a preprocessing stage for tomographic brain mapping (TBM) at each frequency, band. As a method for estimating power spectral density of EEG signals, periodogram method, autocorrelation method. covariance method, modified covariance method, and Burg method are tested in this paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.