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Abstract

A large volume of patient data is generated from various devices used in healthcare applications. With increase in the volume of
data generated in the healthcare industry, more wellness monitoring is required. A cloud-enabled analysis of healthcare data that
predicts patient risk factors is required. Machine learning techniques have been developed to address these medical care
problems. A novel technique called the radix-trie-based Tanimoto kernel regressive infomax boost classification (RT-TKRIBC)
technique is introduced to analyze the heterogeneous health data in the cloud to predict the health risks and send alerts. The
infomax boost ensemble technique improves the prediction accuracy by finding the maximum mutual information, thereby
minimizing the mean square error. The performance evaluation of the proposed RT-TKRIBC technique is realized through
extensive simulations in the cloud environment, which provides better prediction accuracy and less prediction time than those
provided by the state-of-the-art methods.

Index Terms: Cloud, Healthcare heterogeneous data, Internet of things, Predictive analytics, Radix trie

I. INTRODUCTION

The cloud has recently been offering a wide range of data
analytics services via the Internet. Data analysis is the pro-
cess of collecting, storing, processing, and retrieving data.
Cloud computing has several applications in the fields of
education, social networking, and medicine. However, the
benefit of the cloud for medical purposes is the seamless
connectivity it offers to handle the large volume of data gen-
erated by the healthcare industry. To provide better services
to patients over online healthcare applications, machine
learning algorithms play a significant role in handling a very
large volume of patient data to improve accurate disease risk
prediction.

A fuzzy rule-based neural classifier (FRNC) was devel-
oped in [1] to predict disease and severity. The proposed

method developed a cloud and internet-of-things based
mobile healthcare application to monitor serious diseases.
However, it consumes more time for disease prediction
which minimizes accuracy. A parallel semi-naïve Bayes
(PSNB) was introduced in [2] to predict future health using
healthcare big data. The accuracy of PSNB was improved
using the modified conjunctive attribute (MCA). However,
the error rate was not minimized. 

A Hadoop cluster architecture was developed in [3] for
processing and analyzing healthcare big data on cloud com-
puting. However, disease prediction was not performed. A
novel medical cloud multi-agent system (MCMAS) was
introduced in [4] to provide various services to patients. The
designed system did not use any machine-learning technique
to analyze patient data. 

An intelligent healthcare system was introduced in [5] for
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data analytics to improve healthcare services However, any
advanced deep learning technique was not employed to fur-
ther enhance the quality of the cloud-based service. A regu-
larized stacked denoising auto-encoder (SDAE) method was
developed in [6] to predict clinical risks using large volumes
of electronic health records (EHRs). However, the designed
method failed to conduct experiments using a large-scale
dataset with heterogeneous data. 

A multimodal data-based recurrent convolutional neural
network (MD-RCNN) was developed in [7] to predict dis-
ease risk, but it failed to predict other diseases in minimal
time. A nonlinear support vector classifier (SVC) with the
radial basis function kernel algorithm was introduced in [8]
for cardiovascular disease prediction. However, the designed
algorithm failed to evaluate the predictions of various dis-
eases. A deep risk based on the attention method and deep
neural networks was introduced in [9] to predict the risk of
cardiovascular disease. However, the designed method failed
to improve the accuracy of risk prediction. A fuzzy-based
reinforcement learning method using a neural network was
developed in [10] for healthcare IoT in a fog-computing
environment. 

An ensemble multi-label classification technique was
introduced in [11] to predict chronic disease risk, but this
technique failed to provide a more accurate health risk pre-
diction. An ensemble classification method was developed in
[12] to achieve a higher accuracy for heart disease risk pre-
diction. However, the designed methods failed to minimize
risk prediction time. A deep learning paradigm was intro-
duced in [13] to improve health prediction using big data,
but it failed to improve prediction performance. An ant col-
ony optimization (ACO)-based method was developed in
[14] for processing mobile cloud-based large volumes of
healthcare data.

A machine learning-based predictive model was intro-
duced in [15] to predict type 2 diabetes with higher accuracy,
but it failed to solve other disease-predictive problems in
healthcare. A hybrid intelligent machine-learning-based pre-
dictive system was introduced in [16] for the diagnosis of
heart disease. However, the designed system did not mini-
mize the error rate of the disease prediction. Several machine
learning methods have been developed in [17] for predicting
chronic diseases using health data. However, these methods
failed to minimize the false-positive rate of disease predic-
tion. 

An ensemble machine learning algorithm (EMLA) was
designed in [18] to predict coronary artery disease risk, but
the designed algorithms failed to achieve a higher risk pre-
diction accuracy. A data-driven approach uses supervised
machine learning techniques that were introduced in [19] to
predict a patient’s disease risk. However, the performance of
the disease prediction time has not been solved. An intelli-
gent decision support method was introduced in [20] to pre-

dict heart disease using the historical data of patients. The
model failed to implement the ensemble model in a cloud
environment to achieve a higher accuracy of disease predic-
tion. 

A. A Major Contribution of the Work

The major issues discussed in the preceding literature are
addressed by introducing a new technique called the radix-
trie-based Tanimoto kernel regressive infomax boost classifi-
cation (RT-TKRIBC) technique. The main contributions of
the proposed RT-TKRIBC technique are summarized as fol-
lows:
• The cloud-based healthcare data analytic architecture RT-

TKRIBC is designed to process heterogeneous patient health
data and predict the risk with higher accuracy. Tanimoto
kernel regression is applied to analyze the input training
data with the testing data. The regression function mea-
sures the similarity between these two datasets and pre-
dicts a higher risk of a particular disease. The infomax
boosting technique improved the regression results and
achieved a higher prediction accuracy.

• To minimize the false-positive rate of risk prediction, the
infomax boosting technique finds mutual information
between patient data and their predictive classes using a
gradient ascent function. Additionally, the ensemble boost-
ing technique finds a better weak learner with a smaller
mean square error. This helps to improve the accuracy of
prediction and minimize incorrect predictions. 

• To reduce the time of risk prediction, RT-TKRIBC uses the
radix trie to store heterogeneous patient health data on a
cloud data center to easily access the data instantly.

B. Outline of Paper 

This paper is structured as follows. In Section 2, a brief
explanation of the proposed RT-TKRIBC technique with a
detailed diagram is presented. The experimental evaluation
and dataset description are presented in Section 3. In Section
4, various evaluation metrics are described. The results and
discussion of the proposed technique and state-of-the-art
methods are presented in Section 5. Finally, Section 6 pres-
ents the conclusions of the study.

II. METHODOLOGY

With the recent developments in healthcare systems, the
amount of health data in various formats is rapidly increas-
ing. These types of data are collected from various sources,
including digital records, mobile devices, and wearable
health devices. Big health data provide more opportunities
for health risk analysis and improvement of health services
167 http://jicce.org
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via cloud-based architecture. This research aims to enhance
health risk prediction using machine learning paradigms. In
this work, the RT-TKRIBC technique was introduced for a
cloud-based architecture.

As shown in Fig. 1, the flow process of the proposed RT-
TKRIBC technique is illustrated to perform risk prediction
through data classification. Consider a cloud-based health-
care environment where heterogeneous data (D1, D2, D3,….
Dm) are collected from a large number of patients (p1, p2,
p3,….pn). Heterogeneous data contain various types of
patient data. With the rapid growth of healthcare applica-
tions, many devices used in healthcare create various types
of patient data such as heart disease-related data, diabetes
data, kidney data. These types of data were collected and
analyzed. The collected data are stored in data centers C1,
C2, C3,…Cs for performing predictive analytics. Here, the
datacenters are related to hospitals where the various depart-
ments (i.e., servers) are available to predict patient health
status. The proposed RT-TKRIBC technique is designed
using the above system model, and the different processes
are explained in the subsequent sections. 

A. Radix Trie Based Data Storage 

The inputs of the heterogeneous patient data were col-
lected and stored in the cloud datacenter. The data center
uses a radix trie to store heterogeneous patient data at the
server. The radix trie is a data structuring technique in each
child node is connected to its parent node. The number of
child nodes of each internal node is created based on radix
‘R’ of the tree, where ‘R’ indicates a positive integer. For
example, when radix is set to 2 each node can have at most
two children.

Fig. 2 shows the structure of the tree with a radix two. The
radix trie performs insertion, deletion, and searching opera-
tions to add and remove data. Insertion adds a new string to
the trie while attempting to minimize the amount of data
stored. To insert the data, a new labeled outgoing edge added
and subsequently split into two edges (i.e., children’s). This
splitting process ensures that no node has more than two
children because radix is set to ‘2’. To remove data from a
tree, first the leaf node is located and then the corresponding
leaf node is removed from the tree. Following this proce-
dure, all patient data were stored in the cloud server. 

B. Tanimoto Kernel Regressive Infomax Boosting 
Classification Technique

After storing the data, the data center starts to perform
predictive analytics by analyzing the input data and perform-
ing the risk prediction. The infomax boost technique was
applied to predict patient health by analyzing the risk factors
using the regression function. The infomax boost is a
machine learning ensemble technique that provides accurate
classification by analyzing patient data. The infomax boost
uses the weak learner as a base classifier to provide the
results with some training errors. In contrast, boosting is a
strong classifier that provides accurate prediction results.

Fig. 1. Flow process of RT-TKRIBC technique.

Fig. 2. Structure of a tree with radix two.

Fig. 3. Infomax boost ensemble learning classifier. 
https://doi.org/10.6109/jicce.2021.19.3.166 168
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Therefore, the proposed RT-TKRIBC technique uses this
machine-learning ensemble technique to improve the classi-
fication performance by summing all weak classifiers. The
formation of the ensemble learning classifier is shown in
Fig. 3.

Fig. 3 depicts a structure of the infomax boost ensemble-
learning classifier with multiple weak learners. The ensem-
ble-learning classifier considers the training sets (Dm, W),
where Dm denotes the patient heterogeneous data and W
denotes strong prediction results. The ensemble-learning
classifier uses ‘b’ number of weak learners s1, s2, s3,…sh to
classify the input data. The proposed infomax boost ensem-
ble-learning classifier uses kernel regression as a weak
learner to predict the patient health risks. 

Tanimoto kernel regression is a statistical process for
determining the relationships between a dependent variable
(i.e., output) and one or more independent variables (i.e.,
input) based on the similarity measure. Here, the kernel indi-
cates the similarity function between two variables. 

As shown in Fig. 4, a block diagram of the Tanimoto ker-
nel regression was developed using patient data. Consider
D1, D2, D3,….Dm as input training data and T1, T2, T3,….Tr

testing disease data. Then, the similarities between these two
data sets are calculated using the Tanimoto kernel function,
which is expressed as follows:

, (1)

where β represents the Tanimoto kernel coefficient, m rep-
resents the number of training data, Dm and Tr denote the
training and testing disease data sets, respectively, 
denotes the sum of the squared scores of the Dm, 
denotes the sum of the squared scores of the Tr and 
denotes the sum of the product of the paired score of Dm and

Tr. The Tanimoto kernel coefficient provides output ranges
from 0 to +1. The threshold is set to the similarity value and
predicts a patient with a higher risk of the disease. If the
similarity value is higher than the threshold, the health risk
to the disease is predicted. The output of the weak classifier
had a mean square error. The error is minimized by combin-
ing the output of the weak classifiers into a strong classifier.
The output of the final strong classification results was
obtained as follows: 

, (2)

where the output of strong classification results is denoted
by ‘W’ and Fi(D) indicates the weak classification results.
For each weak learner, the weight is initialized to accurately
predict the results. After weight initialization, the mutual
information is measured between the classified data and their
predictive classes to minimize the mean square error. There-
fore, mutual information was applied to validate the predic-
tion results of each weak learner. Mutual information is a
function that identifies the mutual dependence between the
results and a particular class. The probabilities of mutual
dependence were measured as follows: 

, (3)

where MUI denotes the mutual information between the
patient’s data (Dm) and predictive classes (gm), P(Dm, gn)
denotes a joint probability distribution, P(Dm), and P(gn)
denotes a marginal probability between the patient's data and
predictive classes. Then, the gradient ascent function is
applied to determine the maximum dependence.

. (4)

In (4), F(x) denotes a gradient ascent function and argman
denotes an argument of the maximum function. Based on the
validation results, the mean square error was calculated
based on the difference between the actual and predicted
classification results. The error is calculated mathematically
as follows:

, (5)

where EMS denotes mean square error, Pa represents the
actual results of a weak learner, Pp denotes predicted results
of a weak learner, and ‘m’ denotes the amount of patient
data. Based on the error value, the initial weight was
updated. If the weak learner predicted correctly, the initial
weight was minimized. Otherwise, the weight increases.
Therefore, the ensemble-learning technique determines the
weak learner that has a smaller mean square error. The output of
the strong classification results was obtained as follows: 

 

Dm
2
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2

DmTr

 

 

 

 

Fig. 4. Block diagram of Tanimoto kernel regression. 
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, (6)

where W represents the output of the ensemble classifier and
 represents the updated weight. Therefore, the ensemble-

learning technique accurately predicts the patient's risk, and
the cloud datacenter sends alerts to the doctors for informing
them of the existence of higher-risk patients. This helps pro-
vide the exact treatment and minimize the mortality of
patients in an emergency. The algorithmic process of pro-
posed RT-TKRIBC technique is described as follows: 

The step-by-step process of the health risk predictive anal-
ysis was performed using a machine learning ensemble clas-
sifier. Different heterogeneous data were collected from the
dataset and stored in the cloud data center. Then, the data
center performs a patient health risk predictive analysis
using regression and classification. The Tanimoto kernel
regression function analyzes patient training and testing dis-
ease data. When the training data are more similar to the
testing disease data, it predicts the patient health risk. In
other words, the disease-affected patient was correctly pre-
dicted. The output of weak classification results is summed
to create a strong classifier by calculating the mean square
error and measuring the mutual information. The strong clas-
sifier finds the weakest learner with the minimum error. This
helps improve the prediction accuracy and minimizes the
false-positive rate. 

III. EXPERIMENTAL SETTINGS

The experimental evaluation of the proposed RT-TKRIBC
technique and existing methods, namely FRNC [1] and
PSNB [2], are conducted using the Java language with vari-
ous input heterogeneous data taken from the heart disease,
diabetes, and kidney disease datasets.

A. Dataset’s Description 

The heart disease dataset was obtained from the UCI
machine learning repository (http://archive.ics.uci.edu/ml/
datasets/heart+Disease). This dataset contains 76 attributes,
but only 14 of them are used for healthcare big data analyt-
ics in a cloud environment. The patient identification num-
ber, age, sex, patient name, resting blood pressure, serum
cholesterol in mg/dl, chest pain type, and so on are among
the attributes. This dataset comprises 303 instances. The
attribute categorists are categorical, integer, real, and the
dataset characteristic is a classification. The associated task
performed by the dataset was classified. 

The other dataset is a Pima Indian diabetes dataset, taken
from https://www.kaggle.com/uciml/pima-indians-diabetes-
database/data. All attributes are numeric values. The dataset
provided data from diabetes cases in which all patients were
women at a minimum age of 21 years. The dataset consists
of 768 samples (i.e., instances) and the following nine attri-
butes: pregnancy, glucose, blood pressure, skin thickness,
insulin, BMI, diabetes pedigree function, age, and outcome.

The Chronic_Kidney_Disease Data Set is taken from the
UCI machine learning repository https://archive.ics.uci.edu/
ml/datasets/Chronic_Kidney_Disease. The dataset comprises
25 attributes and 400 instances used for predicting kidney
disease. The dataset characteristics were multivariate, and
the characteristics of the attributes were real. The associated
task was classified. As a result, these three datasets were
used to perform experiments to collect patient data and per-
form predictive analytics. 

IV. EVALUATION METRICS

The performance analyses of the RT-TKRIBC technique,
FRNC [1], and PSNB [2] are discussed using different per-
formance metrics, such as prediction accuracy, false-positive
rate, and prediction time. The obtained results are discussed
with the help of both tables and graphical illustrations. The
performance of the various metrics is given below.

A. Prediction Accuracy

Prediction accuracy (Ap) is measured as the ratio of the
number of patient data correctly predicted to be at risk to the

Algorithm 1. Radix Trie based Tanimoto Kernel Regressive Infomax 
Boost Classification

Input: Datasets ‘B’

Begin 
Collect patient heterogeneous data D1, D2, D3..Dm from ‘B’
  Store the data to a data center using radix trie
  For each collected data Dm

    Constructs ‘b’ weak learners 
  Analyze the training patient data and testing disease data ‘β’
  If (β > th) then
   Predict the patient with a higher risk of a particular disease
  else

         Check other possible classes
  end if
  Obtain weak classification results 
  Combine all the weak classifiers  

      For each Fi(D) 
      Initialize the weight ‘ϑ’
      Measure mutual information ‘MUI’
      Compute mean square error EMS

       End for
       Update the weight ∆ϑ
       Find weak learner with minimum error 

   End for
Return (strong classification )

End
Output: Improve prediction accuracy

 



i 1=
b

Fi D 

W i 1=
b

Fi D * =
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total number of patient data taken as input. The prediction
accuracy was mathematically calculated as follows:

,  (7)

where Ap denotes a prediction accuracy, mCP represents the
number of data correctly predicted by the cloud data center,
and ‘m’ denotes a total number of patient data taken as input.
Therefore, Ap is measured in terms of percentage (%). 

B. False-positive Rate

The false-positive rate (Fp) is measured as the ratio of the
number of patient data points predicted to the total number
of patient data taken as input. Therefore, the formula for cal-
culating the false positive rate is as follows: 

, (8)

where, Fp indicates a false-positive rate, mICP represents the
number of patient data incorrectly predicted as a risk, and
‘m’ denotes a total number of patient data taken as input.
The Fp is measured in terms of percentage (%). 

C. Prediction Time

Prediction time (Ptime) is measured as the amount of time
taken by an algorithm to predict the risk of the patient using
heterogeneous health data taken as input. Therefore, the
overall prediction time was calculated as follows: 

, (9)

where Ptime indicates the prediction time, t represents the
time taken to predict single patient data. The prediction time
is measured in terms of milliseconds (ms). 

V. COMPARISON WITH STATE-OF-THE-ART 

MACHINE LEARNING ALGORITHMS

In this section, the clinical risk prediction performance of
the proposed RT-TKRIBC technique and two state-of-the-art
classification algorithms, that is, FRNC [1] and PSNB [2],
using various numbers of instances (i.e., patient data) are
compared. 

The experimental results of the prediction accuracy and
false-positive rate are shown in Table 1. For a fair compari-
son of the results and discussion, the numbers of input
patient data were taken in the range from 50 to 500. To eval-
uate both accuracy and false-positive rate, similar input
training heterogeneous data were taken as input. The hetero-
geneous data, that is, various types of patient data collected

from the three disease datasets, namely, heart disease, diabe-
tes, and kidney disease datasets. These data are stored in the
cloud datacenters. The performance of the RT-TKRIBC tech-
nique showed considerable improvements in terms of accu-
racy and false-positive rate in predicting the health risks of
patients. This is because of the use of an effective and effi-
cient machine learning technique called the infomax boost
ensemble classification (IBEC) technique. The ensemble
classifier performs regression analysis between the training
and testing disease patient data. If these two are correctly
matched, patients are classified according to their risk of a
particular disease. In other words, the training patient data
are correctly matched to the testing heart disease data, and
then classified based on their risk of heart disease. Similarly,
the RT-TKRIBC technique was used to predict the variety of
all patient health. This, in turn, improved prediction accu-
racy. Additionally, the IBEC technique uses mutual informa-
tion to validate the prediction results. Furthermore, the
boosting technique selects a weak classifier with the mini-
mum mean square error. As a result, the RT-TKRIBC tech-
nique had a higher prediction accuracy and a lower false-
positive rate. 

Ten results were obtained for each machine learning clas-
sifier. The RT-TKRIBC technique results were compared
with those of the other two state-of-the-art classification
algorithms. As shown in Table 1, the prediction accuracies of
RT-TKRIBC, FRNC [1], and PSNB [2] were 94%, 88%, and
84%, respectively, when the number of patient data was 50.
Similarly, various accuracy results were obtained using dif-
ferent patient data. The compared results prove that the aver-
age prediction accuracy is found to be higher using the RT-
TKRIBC technique by 6% and 10% compared to the RT-
TKRIBC technique, FRNC [1], and PSNB [2]. 

The average false-positive results of the RT-TKRIBC tech-
nique are significantly reduced by 44% compared to FRNC
[1] and 57% compared to PSNB [2]. Therefore, the RT-
TKRIBC technique showed considerable improvements in

 

 

 

Table 1. Comparative analysis of prediction accuracy false positive rate

Number 
of patient 

data

Prediction accuracy (%) False-positive rate (%)

RT-
TKRIBC

FRNC PSNB
RT-

TKRIBC
FRNC PSNB

50 94 88 84 6 12 16

100 92 89 87 8 11 13

150 91 85 83 9 15 17

200 94 90 87 6 10 13

250 92 88 84 8 12 16

300 95 89 82 5 11 18

350 94 88 83 6 12 17

400 93 90 87 7 10 13

450 96 89 86 4 11 14

500 94 88 84 6 12 16
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terms of both the prediction accuracy and false-positive rate.
The graphical results of the prediction accuracy and false-
positive rate are shown in Figs. 5 and 6.

Fig. 5 shows the impact of prediction accuracy versus var-
ious patient data (i.e., instances). The plot uses the processed
instances (i.e., number of patient data) as the x-axis and the
prediction accuracy as the y-axis separately. Owing to space
constraints, only ten iterations are performed for various
input data and the results are obtained. The significant differ-
ence diagram shown in Fig. 5 shows that the RT-TKRIBC
technique outperforms the conventional methods FRNC [1]
and PSNB [2]. 

Fig. 6 shows the performance results of three machine
learning techniques used to classify patients and predict
health risks using different instances. The graphical plot
illustrates the chart of three identical classification tech-
niques RT-TKRIBC technique, FRNC [1], and PSNB [2],
which are represented by three colors, blue, red, and green,

respectively. Fig. 6 shows a continuous red color column,
which indicates that the RT-TKRIBC technique minimizes
the false-positives and is more robust in correctly predicting
health risks compared to other conventional classifiers. 

Table 2 and Fig. 7 depict the performance analysis of the
prediction time based on the input patient data in the form of
heterogeneity. Fig. 7 shows that the number of input patient
data is directly proportional to the prediction time. As the
number of data increases, so does the dimension of the
extracted patient data. The time required for the prediction
was also increased when all three classification methods
were used. However, when compared to the two state-of-the-
art methods, the RT-TKRIBC technique reduces prediction
time. This is because the RT-TKRIBC technique uses the
radix trie for data storage on the cloud datacenter. Subse-
quently, disease prediction is performed to minimize the
time. Additionally, the Tanimoto kernel function is used to
match the training and testing disease data, which reduce
prediction time. The prediction time using the RT-TKRIBC

Fig. 5. Performance analysis of prediction accuracy.

Fig. 6. Performance analysis of the false-positive rate. 

Table 2. Comparative analysis of prediction time

Number of patient 
data

Prediction time (ms)

RT-TKRIBC FRNC PSNB

50 15 17 20

100 18 20 22

150 21 23 25

200 24 26 28

250 25 27 30

300 27 30 33

350 30 32 35

400 32 34 36

450 33 35 37

500 36 38 41

Fig. 7. Performance analysis of prediction time.
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technique is reduced by 8% and 16% compared to FRNC [1]
and PSNB [2], respectively. 

The results demonstrate that the RT-TKRIBC technique
improves the performance of health risk prediction with
higher accuracy, minimum false-positive rate, and prediction
time.

VI. CONCLUSION

A novel technique called RT-TKRIBC is designed for
cloud-based healthcare risk prediction with higher accuracy,
less time, and a lower false-positive rate. This is achieved by
applying the IBEC technique for classifying patient data
according to the risk of a particular disease. The Tanimoto
kernel regression function was also applied to analyze het-
erogeneous patient data obtained from various databases.
The regression function analyzes the input training data
using the test data. The ensemble classification technique
minimizes the mean square error of prediction through the
mutual information measure. The performance of the RT-
TKRIBC technique was evaluated with two existing machine
learning techniques using different metrics, such as predic-
tion accuracy, false-positive rate, and prediction time. The
comparative analysis demonstrates that the RT-TKRIBC
technique outperforms state-of-the-art methods in terms of
health risk prediction in less time.
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