Chella Gifta Christopher;Partheeban Pachaivannan;P. Navin Elamparithi
Advances in concrete construction
/
v.15
no.2
/
pp.85-96
/
2023
The characteristics of self-compacting concrete (SCC) made with fly ash and reinforced with polyester fibers were investigated in this research. Polyester fibers of 12 mm long and 15 micrometer diameters were utilized in M40 grade SCC mixtures at five different volume fractions 0.025%, 0.05%, 0.075%, 0.1%, 0.3% as a fiber reinforcement. To understand the influence of polyester fibers on passing ability, flowability, segregate resistance the J ring, L box, V funnel, slump flow and U box tests were performed. Polyester fibers have a direct influence, with a maximum of 0.075% polyester fibers producing excellent characteristics. ANN models were constructed using the testing data as inputs to anticipate the fresh and hardened characteristics as targeted outputs. The research revealed that R2 values ranging from 0.900 to 0.997 appears to be a good correlation. The performance of ANN models and regression models for predicting the new characteristics of SCC is also evaluated.
International conference on construction engineering and project management
/
2007.03a
/
pp.450-458
/
2007
This paper presents the results of a statistical analysis and its research findings focusing on the learning aspect in the process of international joint ventures (IJVs). The contents of this paper is derived from a sample of 96 field cases based on a proposed conceptual model of effective learning for international construction joint ventures (ICJVs). The paper presents a brief review on the conceptual model with hypotheses and summarized the key results of statistical analysis including factor and multiple regression analysis for the testing of the validity of the proposed conceptual model and its associated research hypotheses. Among other research findings, the research confirms that ICJVs provides an excellent platform of in-action learning for construction organization and suggests that good outcomes in learning could be reaped by a company who has a clear learning intent from the beginning and subsequently take corresponding learning actions during the full process of the joint venture.
여러 장치들과 연동하여서 동작하는 네트워크 시스템 개발 시, 회귀테스트는 전체 시스템의 안정성을 보장하기 위한 가장 필요한 테스트이다. 그러나 서비스가 진행 중이거나 연동을 위한 추가적인 장비가 필요할 경우 테스트의 제약을 받게 된다. 본 논문에서는 회귀성 테스트에서 발생하는 시간과 비용을 줄이기 위한 가상 시스템에서 네트워크 시뮬레이터를 제안한다. 네트워크 시뮬레이터는 테스트에 대한 시나리오를 분석하여 테스트에 따른 실제 장비에서의 메시지들을 구성하며, 테스트 시나리오에 맞게 이벤트를 발생시킴으로서 가상으로 회귀성 테스트를 가능하게 한다. 설계된 네트워크 시뮬레이터는 우선적으로 모바일 환경에서 테스트를 시행하여, 가상 이벤트 구성과 동작의 기능을 검증하는데 사용되었다.
Nguyen Ba Tien;Hoai-Nam Nguyen;Hoang-Ha Le;Tran Thu Trang;Chau Van Dinh;Ha-Nam Nguyen;Gyoo Seok Choi
International Journal of Internet, Broadcasting and Communication
/
v.15
no.2
/
pp.261-267
/
2023
A common approach to the problem of predicting student test scores is based on the student's previous educational history. In this study, high school transcripts of about two thousand candidates, who took the High-school Student Assessment (HSA) were collected. The data were estimated through building a regression model - Random Forest and optimizing the model's parameters based on Genetic Algorithm (GA) to predict the HSA scores. The RMSE (Root Mean Square Error) measure of the predictive models was used to evaluate the model's performance.
Journal of Information Technology Applications and Management
/
v.30
no.5
/
pp.59-82
/
2023
The present research aims to examine whether learning from the supervisor influences readiness for change with the mediating impact of planfulness. Drawing upon the theory of planned behavior, it is hypothesized that learning from the supervisor positively impacts planfulness ability in individuals, which in turn enhances the readiness for change. Through using convenience sampling, the sample of 451 was collected from employees working full-time in the manufacturing and I.T. service organizations in India. Structural equation modeling and regression analysis indicate that learning from the supervisor is positively associated with readiness for change and planfulness. Additionally, planfulness fully mediated the relationship between learning from the supervisor and readiness to change. The findings of the present research highlight that continuous support and learning from the supervisor enhances the planfulness ability of the individual and consequently enhances individual readiness for change. The current research is pioneering in testing the hypothetical model associating learning from the supervisor, planfulness, and readiness for change.
KSCE Journal of Civil and Environmental Engineering Research
/
v.40
no.3
/
pp.273-283
/
2020
Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.
The gelatinized model food system were prepared by combining moisture, starch and protein, and the textural properties of their gels of different temperatures and times of heating were investigated by the use of Instron Universal Testing Machine. The hardness, springiness, cohesiveness, gumminess and chewiness of model foods had a high correlation with solid content and the regression equations between the hardness of model foods and moisture content heated for 20min. at $80{\circ}C$ were as follows; $H(PS_4)=18.6405-3.8201M+0.1959M^2,\;H(P_1S_1)=244.7933-5.692M+0.0332M^2,\;H(P_4S)=693.0292-16.6884M+0.1005M^2$, The correlation coefficients were $0.996^{**},\;0.998^{**}\;and\;0.998^{**}$, respectively. Total correlations between textural parameters and temperature and heating times were different according to model foods. The correlation between textural parameters was proportional to protein foods, but the hardness and cohesiveness of starch foods showed the relationship of inverse proportion. Under low solid content, the parameters of model foods appeared to decrease as protein content increased. Under high solid content, the parameters of protein foods were higher than those of starch foods above some level of protein content. The regression equation between the hardness and protein content heated for 20min. at $80^{\circ}C$ was as follows; Hardness(20%)=5.6858-13.5670P+$9.7758P^2$ and the correlation coefficient was $0.95^{**}$.
Objective: To investigate the predictive value of radiomics features based on cardiac magnetic resonance (CMR) cine images for left ventricular adverse remodeling (LVAR) after acute ST-segment elevation myocardial infarction (STEMI). Materials and Methods: We conducted a retrospective, single-center, cohort study involving 244 patients (random-split into 170 and 74 for training and testing, respectively) having an acute STEMI (88.5% males, 57.0 ± 10.3 years of age) who underwent CMR examination at one week and six months after percutaneous coronary intervention. LVAR was defined as a 20% increase in left ventricular end-diastolic volume 6 months after acute STEMI. Radiomics features were extracted from the oneweek CMR cine images using the least absolute shrinkage and selection operator regression (LASSO) analysis. The predictive performance of the selected features was evaluated using receiver operating characteristic curve analysis and the area under the curve (AUC). Results: Nine radiomics features with non-zero coefficients were included in the LASSO regression of the radiomics score (RAD score). Infarct size (odds ratio [OR]: 1.04 (1.00-1.07); P = 0.031) and RAD score (OR: 3.43 (2.34-5.28); P < 0.001) were independent predictors of LVAR. The RAD score predicted LVAR, with an AUC (95% confidence interval [CI]) of 0.82 (0.75-0.89) in the training set and 0.75 (0.62-0.89) in the testing set. Combining the RAD score with infarct size yielded favorable performance in predicting LVAR, with an AUC of 0.84 (0.72-0.95). Moreover, the addition of the RAD score to the left ventricular ejection fraction (LVEF) significantly increased the AUC from 0.68 (0.52-0.84) to 0.82 (0.70-0.93) (P = 0.018), which was also comparable to the prediction provided by the combined microvascular obstruction, infarct size, and LVEF with an AUC of 0.79 (0.65-0.94) (P = 0.727). Conclusion: Radiomics analysis using non-contrast cine CMR can predict LVAR after STEMI independently and incrementally to LVEF and may provide an alternative to traditional CMR parameters.
After selecting a group of women with premenstrual syndrome based on daily distress scores of 28 days, one needs to estimate threshold for the change of symptoms, which would be useful for the clinician's diagnosis in hospitals. However, a test of whether a change has occurred has to precede the estimation of the threshold. In this paper, we apply parametric and nonparametric testing methods to an example data obtained from a group of women. Nonparametric method does not assume any distributional form of distress scores and parametric testing method is based on the normal distributions of linear regression lines. Therefore, the optimal situation of both methods would be different and we will assess it with a simulation study.
The purpose of this study is testing measurement invariance of the school vitality scale across the level of school. For this study, 3,156 elementary school teachers and 4,411 secondary school teachers were surveyed. As a result, school vitality scale was found to have the same factor structure in the structure regression model. Second, the factor load of the measurement model was found to be the same. Third, the structural path coefficients were the same. Fourth, structural covariance was found to be the same. Fifth, the structural residuals were the same. Based on these findings, it can be concluded that we can use school vitality scale both elementary school and secondary school. This study will contribute to diagnosing school vitality levels and finding ways to improve school management.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.