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INTRODUCTION

Left ventricular (LV) dysfunction and long-term 
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Objective: To investigate the predictive value of radiomics features based on cardiac magnetic resonance (CMR) cine 
images for left ventricular adverse remodeling (LVAR) after acute ST-segment elevation myocardial infarction (STEMI).
Materials and Methods: We conducted a retrospective, single-center, cohort study involving 244 patients (random-split into 
170 and 74 for training and testing, respectively) having an acute STEMI (88.5% males, 57.0 ± 10.3 years of age) who 
underwent CMR examination at one week and six months after percutaneous coronary intervention. LVAR was defined as a 20% 
increase in left ventricular end-diastolic volume 6 months after acute STEMI. Radiomics features were extracted from the one-
week CMR cine images using the least absolute shrinkage and selection operator regression (LASSO) analysis. The predictive 
performance of the selected features was evaluated using receiver operating characteristic curve analysis and the area under 
the curve (AUC).
Results: Nine radiomics features with non-zero coefficients were included in the LASSO regression of the radiomics score 
(RAD score). Infarct size (odds ratio [OR]: 1.04 (1.00–1.07); P = 0.031) and RAD score (OR: 3.43 (2.34–5.28); P < 0.001) 
were independent predictors of LVAR. The RAD score predicted LVAR, with an AUC (95% confidence interval [CI]) of 0.82 
(0.75–0.89) in the training set and 0.75 (0.62–0.89) in the testing set. Combining the RAD score with infarct size yielded 
favorable performance in predicting LVAR, with an AUC of 0.84 (0.72–0.95). Moreover, the addition of the RAD score to the 
left ventricular ejection fraction (LVEF) significantly increased the AUC from 0.68 (0.52–0.84) to 0.82 (0.70–0.93) (P = 
0.018), which was also comparable to the prediction provided by the combined microvascular obstruction, infarct size, and 
LVEF with an AUC of 0.79 (0.65–0.94) (P = 0.727).
Conclusion: Radiomics analysis using non-contrast cine CMR can predict LVAR after STEMI independently and incrementally 
to LVEF and may provide an alternative to traditional CMR parameters. 
Keywords: Radiomics analysis; ST-elevated myocardial infarction; Percutaneous coronary intervention; Cardiac magnetic 
resonance imaging; Left ventricular adverse remodeling 

remodeling in patients with ST-segment elevation 
myocardial infarction (STEMI) are essential intermediate 
pathophysiological changes in the development of heart 
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Study Sample
A retrospective study was conducted among 244 patients 

aged 18 to 80 years with a diagnosis of STEMI [17] and 
who underwent CMR examination at 7 ± 2 days and 6 
months after percutaneous coronary intervention (PCI) at 
Chinese People’s Liberation Army General Hospital between 
January 2014 and December 2019. The exclusion criteria 
included contraindications for CMR (such as claustrophobia, 
implanted cardiac defibrillator, and gadolinium allergy), 
history of revascularization therapy (including PCI 
and coronary artery bypass grafting) within the past 6 
months, bundle branch or fascicular block, severe heart 
valve disease, known cardiomyopathy, and insufficient 
electrocardiogram data. Figure 1 depicts the study workflow. 
According to whether adverse LV remodeling occurred, the 
study sample of 244 participants was randomly divided into 
training and testing groups, using a 7:3 ratio, with 170 
patients (adverse remodeling vs. no adverse remodeling: 37 
vs. 133) in the training set and 74 (adverse remodeling vs. 
no adverse remodeling: 17 vs. 57) in the testing set.

CMR Acquisition and Quantification of LV End-Diastolic 
Volume

CMR examinations were performed within 7 ± 2 days and 
6 months post-PCI after acute STEMI using a 1.5T scanner 
(Achieva, Philips Medical Systems). A detailed description of 
the CMR protocol is provided in the supplementary methods 
(Supplementary Material). Imaging analysis was performed 
according to current guidelines [18]. Cine CMR imaging was 
performed with steady-state free precession continuously 
covering the short axis from the mitral annulus to the apical 
level in the two- and 4- chamber views using the following 
parameters: repetition time = 3.73 ms, echo time = 1.87 
ms, flip angle = 60°, slice thickness 8.0 mm. The cardiac 
phases of end-systole and end-diastole were determined 
by automatically identifying the smallest and largest cavity 
sizes of the LV in consecutive short axis slices and two-, 
three-, and 4-chamber orientation cine images. The LV mass 
assessment did not include the papillary muscles or slow-
flowing blood in the trabeculae. All the outlined myocardial 
borders were manually adjusted by a radiologist. The change 
in LV end-diastolic volume (EDV) during the follow-up 
period was calculated as the difference between the LV-EDV 
at the follow-up time points from the baseline value and 
normalized to the baseline value (delta LV-EDV [%]/baseline 
LV-EDV), with a value ≥ 20% indicative of LVAR [19]. LVEF 
was calculated by dividing the stroke volume by the LV-EDV. 

failure, which are associated with the severity of myocardial 
injury [1-3]. Early identification of LV adverse remodeling 
(LVAR) and its prognostic determinants could improve 
the accuracy of postoperative monitoring and inform 
individualized management for high-risk patients [4,5]. 
Cardiac magnetic resonance (CMR) is the gold standard for 
in vivo assessment of myocardial injury, with CMR markers of 
myocardial injury, including infarct size [6], microvascular 
obstruction (MVO) [1], and intramyocardial hemorrhage 
[7], being predictive of LVAR after myocardial infarction 
(MI). However, contrast media use in late gadolinium 
enhancement (LGE) CMR imaging is contraindicated in 
patients with severe renal damage. Therefore, quantitative 
CMR measures, particularly those based on contrast-free 
methods, are increasingly used [8,9]. To date, much of the 
quantitative information extracted from CMR images has 
not been fully explored. Considering the substantial overlap 
between healthy and various disease conditions, a strategy 
to optimize the use of the data available in CMR images is 
necessary. 

Radiomics analysis is the mathematical quantification of 
pixel distribution within an image to provide new insights 
into the association between individual data heterogeneity, 
clinical outcomes, and treatment response [10,11]. CMR-
based radiomics analysis is increasingly used for in vivo 
myocardial tissue evaluation in various cardiac pathologies 
[12]. Within the context of STEMI, cine-based radiomics 
analysis allows the detection of the presence and transmurality 
of myocardial scars [13,14] and the differentiation of tissue 
abnormalities that occur during the acute and chronic phases 
post-infarction [15,16]. However, the predictive efficacy 
of cine-based radiomics analysis for LVAR, especially in 
comparison with traditional CMR parameters, remains to 
be clarified. Accordingly, this study aimed to identify the 
radiomics features of cine CMR images predictive of LVAR 
post-revascularization after acute STEMI and to use this 
information to establish a model to predict LVAR. 

MATERIALS AND METHODS

Ethics Statement
This retrospective study was approved by the Ethics 

Committee of the Chinese People’s Liberation Army General 
Hospital (IRB number: S2021-126-02). The requirement for 
informed consent was waived.
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CMR Segmentation and Radiomics Analysis
All radiomic analyses were based on CMR examination 

within 7 ± 2 days post-PCI after SETMI. LV endocardial 
and epicardial contours were automatically delineated 
in the end-diastolic phase using CVI42 (version 5.12.1; 
Circle Cardiovascular Imaging Inc.). The LV contour 
was then manually corrected as needed, applying the 
following principles: slices inclusion with more than 
50% circumferential LV while excluding papillary muscles 
and slow-flowing blood among the trabeculae. The LV 

myocardium in the end-diastolic phase was defined as the 
regions of interest (ROIs) using ITK-SNAP (www.itksnap.org) 
for radiomic analysis. In order to evaluate the radiomics 
feature reproducibility, the ROI delineation was repeated 
twice in 45 patients (selected at random) by the same 
reader for intra-observer reliability and a second reader 
for inter-observer reliability. The ROIs were delineated 
by readers who were blinded to the patient's clinical 
information and endpoints.

Pyradiomics (https://pyradiomics.readthedocs.io/en/

Fig. 1. The study workflow. According to whether adverse LV remodeling occurred, the study sample of 244 participants was randomly 
divided into training and testing groups, using a 7:3 ratio. Radiomics features were extracted from the one week CMR cine images after 
LV myocardial segmentation. LASSO regression was used to select most predictive features for adverse LV remodeling. We then compared 
Radiomic score in patients with and without adverse LV remodeling. LV = left ventricular, STEMI = ST-segment elevation myocardial 
infarction, CMR = cardiac magnetic resonance, PCI = percutaneous coronary intervention, EDV = end-diastolic volume, LASSO = least 
absolute shrinkage and selection operator regression

https://pyradiomics.readthedocs.io/en/latest/
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latest/) was used to preprocess images and extract the 
radiomic features using the program's default settings 
[20]. Before extracting the radiomics features, three 
preprocessing steps were performed on the original images. 
1) The noise effect on the normalized image contrast was 
eliminated by clipping grayscale values greater than the 
99.5th percentile and less than the 0.05th percentile. 2) All 
images were resampled using B-sample interpolation, and 
the intensities were further normalized using a box width 
fixed at 25. 3) The images are normalized using the Z-score 
(mean/variance of image intensities) so that the imported 
image intensities are normally distributed.

With that, 1550 radiomics features were retrieved. In 
order to reduce the influence of range, z-scores were used to 
standardize all the radiomic features, and features with an 
intra-class correlation (ICC) coefficient > 0.7 were retained, 
while features with high collinearity were excluded, leaving 
340 features for subsequent analysis. 

The least absolute shrinkage and selection operator 
(LASSO) regression was then used for feature selection and 
to develop the radiomics score (RAD score). The RAD score 
was constructed by linearly integrating the final specified 
radiomics features with their associated coefficients [21].

Statistical Analysis 
After the Shapiro-Wilk test, normally distributed 

continuous variables were presented as mean ± standard 
deviation, with between-group differences evaluated using 
the unpaired Student’s t-test. Non-normally distributed 
variables are presented as median (Q1–Q3), with between-
group differences evaluated using the Kruskal–Wallis 
test. Chi-square or Fisher’s exact test was used to assess 
between-group differences in categorical variables, 
expressed as frequencies (proportions). Univariable and 
multivariable logistic regression analyses were used to assess 
predictors of LVAR. Variables with a P-value < 0.05 in the 
univariable logistic regression were subsequently included in 
the multivariable models using the stepwise forward method. 
In order to explore the additional value of RAD score in 
comparison to the LVEF and LGE-CMR parameters, combined 
logistic regression models were developed. Model 1 included 
RAD score and LVEF, whereas Model 2 incorporated MVO, 
infarct size, and LVEF. Furthermore, the models were 
validated using a five-fold cross-validation. Receiver 
operating characteristic (ROC) curves were used to evaluate 
the ability of the variables to distinguish between patients 
with and without LVAR, with the best cutoff for each variable 

determined by the highest Youden index value. Decision 
curve analysis was used to evaluate the clinical usefulness of 
the models. All statistical analyses were performed using R 
software (version 4.0.2, R Project for Statistical Computing, 
https://www.r-project.org) and Python (version 3.6, The 
Python Software Foundation).

RESULTS 

Baseline Characteristics and CMR Findings 
The baseline characteristics of 244 patients (age: 57.0 ± 

10.3 years; 88.5% males) are presented in Table 1. The 
demographics, clinical status at recruitment, and CMR 
parameters did not differ significantly between the training 
and testing groups. The baseline characteristics of the 
patients stratified by LVAR status in the training and testing 
sets are presented in Supplementary Table 1.

Radiomics Signatures and the Construction of the RAD 
Score

A total of 340 radiomics features were included in the 
analysis after ICC evaluation and collinearity testing. The 
names of the feature families (categories) and the number 
of extracted texture features for each family are provided in 
Supplementary Tables 2 and 3. After feature selection using 
the LASSO regression shown in Supplementary Fig. 1, nine 
features with non-zero coefficients were included in the RAD 
score development. The type, filter, and coefficients of the 
final selected texture features are presented in Table 2, and 
a violin plot of the RAD score is shown in Supplementary 
Fig. 2. In both the training (P < 0.001) and test (P = 0.002) 
sets, the RAD score was higher in patients with LVAR than in 
those without LVAR. 

Performance of Radiomics Score for Predicting LVAR
In the univariable logistic regression analysis, LVEF, 

infarct size, presence of MVO, and RAD score showed 
a significant predictive association with LVAR. After 
multivariable analysis, only infarct size (odds ratio [OR], 
1.04; 95% confidence interval [CI], 1.00–1.07; P = 0.031) 
and the RAD score (OR, 3.43; 95% CI, 2.34–5.28; P < 0.001) 
were retained as independent predictors of LVAR (Table 3). 
The best cut-off values for predicting LVAR were RAD-score 
of 0.32, infarct size of 25.76% of the LV mass, and LVEF 
of 45%. A RAD score > 0.32 was related to an eight-fold 
increase in the LVAR probability (OR, 7.86; 95% CI, 3.55–
18.66; P < 0.001). 

https://pyradiomics.readthedocs.io/en/latest/
https://www.r-project.org
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The AUC (95% CI) values for the RAD score, infarct 
size, and baseline LVEF to predict LVAR were, respectively, 
as follows: 0.82 (0.75–0.89), 0.61 (0.51–0.71), 0.65 
(0.55–0.76) in the training set, and 0.75 (0.62–0.89), 
0.75 (0.61–0.88), and 0.68 (0.52–0.84) in the testing set. 

The combination of infarct size and RAD score showed a 
favorable performance in predicting LVAR with an AUC of 0.83 
(95% CI 0.76–0.90) under the training set and 0.84 (95% 
CI 0.72–0.95) for the testing set. As indicated in Table 4, 
the AUC of the combined RAD score and LVEF variable was 

Table 1. Characteristics of patients with STEMI in the training and testing set

Variables Training set (n = 170) Testing set (n = 74) P*
Demographic

Age, yr   57.13 ± 10.57 56.61 ± 9.73 0.721
Sex, female 17 (10.0) 11 (14.9) 0.380
BMI, kg/m2 25.91 ± 4.29 25.77 ± 3.75 0.811

Clinical status at recruitment
Heart rate, bpm   78.35 ± 12.51   80.52 ± 13.88 0.229
Systolic BP, mmHg 125.09 ± 21.67 127.49 ± 21.67 0.427
Baseline Killip class 0.363

I 145 (85.3) 67 (90.5)
> II   25 (14.7) 7 (9.5)

Cardiovascular risk factors 
Hypertension   85 (50.0) 40 (54.1) 0.658
Diabetes mellitus   41 (24.1) 14 (18.9) 0.467
Hyperlipidemia   37 (21.8) 11 (14.9) 0.284

Procedural characteristics
Time to reperfusion, h 13.08 ± 36.10 7.76 ± 13.13 0.219
MI location, non-anterior   91 (53.5) 34 (45.9) 0.342
Pre-procedural TIMI flow, 0–1 126 (74.1) 55 (74.3) 0.637
Post-procedural TIMI flow, 3 150 (88.2) 69 (93.2) 0.180

Laboratory examination 
CK-MB, ng/mL   87.8 (13.9–225.0)   59.1 (13.5–228.8) 0.518
hs-TnT, ng/mL   7.8 (1.8–100.0) 6.0 (1.0–99.8) 0.392
NT-ProBNP, pg/mL 146.0 (51.2–370.7) 196.4 (54.8–508.3) 0.455

Medication 
Aspirin 167 (98.2) 73 (98.6) > 0.999
ACEI or ARB 138 (81.2) 63 (85.1) 0.573
β-blockers 141 (82.9) 62 (83.8) > 0.999
Statin 167 (98.2) 73 (98.6) > 0.999

CMR parameters
LVEF, %   47.51 ± 10.49 48.23 ± 9.12 0.609
LV-EDV, mL 148.83 ± 38.94 148.47 ± 38.19 0.946

LGE-CMR parameters
Infarct size, % of LV mass   23.92 ± 12.11   21.25 ± 10.94 0.104
Area at risk, % of LV mass   41.00 ± 15.81   37.30 ± 12.82 0.077
MVO   75 (44.1) 26 (35.1) 0.243
RAD score   0.00 ± 1.10   0.00 ± 1.04 > 0.999

Data are presented as count (%) for categorical variables and median (Q1–Q3) or mean ± standard deviation for continuous variables.
*Unpaired Student’s t-test or Mann-Whitney U-test for continuous variables and chi-square test and Mann-Whitney U-test for categorical 
variables were applied to compare differences between groups.
STEMI = ST-segment elevation myocardial infarction, BMI = body mass index, BP = blood pressure, MI = myocardial infarction, TIMI = 
thrombolysis in myocardial infarction, CK-MB = creatine kinase MB, hs-TnT = high-sensitivity troponin T, NT-proBNP = N-terminal pro-
B-type natriuretic peptide, ACEI = angiotensin converting enzyme inhibitor, ARB = angiotensin receptor blocker, CMR = cardiovascular 
magnetic resonance, LVEF = left ventricular ejection fraction, LV = left ventricular, EDV = end-diastolic volume, LGE = late gadolinium 
enhancement, MVO = microvascular obstruction, RAD = radiomics score
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0.83 (Model 1; 95% CI, 0.76–0.90), which was higher than 
for the combined MVO, infarct size, and LVEF (Model 2; 0.68; 
95% CI, 0.59–0.78; Delong’s test, P = 0.007) in the training 

set. In the testing set, the addition of the RAD score to LVEF 
increased the area under the curve (AUC; 95% CI) from 0.68 
(0.52–0.84) to 0.82 (0.70–0.93) (P = 0.018). The AUC (95% 

Table 2. Selected radiomics feature and coefficients

Features Filter Type Coefficients
RAD score

Least axis length Original Shape -0.62192
Long run low gray level emphasis Original GLRLM 0.143564
Imc1 Gradient GLCM -0.16443
90 percentile Lbp.3D.m2 Firstorder 0.029946
Dependence non-uniformity normalized Square GLDM 0.649632
Skewness Wavelet.LLH Firstorder -0.2804
Run variance Wavelet.LLH GLRLM 0.142035
Idmn Wavelet.HHH GLCM 0.203119
Dependence non-uniformity normalized Wavelet.HHH GLDM 0.1062

RAD = radiomics score, Imc1 = information matrix correlation 1, Idmn = inverse deviation matrix normalization, GLRLM = grey-level run 
length matrix, GLCM = grey-level co-occurrence matrix, GLDM = grey-level dependence matrix

Table 3. Univariable and multivariable logistic regression analysis for LVAR

Variables
Univariable 

P
Multivariable 

P
OR (95% CI) OR (95% CI)

Age, yr 1.01 (0.98–1.04) 0.475
Sex, female 1.20 (0.45–2.87) 0.698
Pre-procedural TIMI flow

0–1 ref -
2 2.21 (0.70–6.48) 0.154
3 0.47 (0.17–1.12) 0.111

MI location, non-anterior 0.58 (0.31–1.07) 0.082
Hypertension 1.67 (0.91–3.14) 0.102
HDL, mmol/L 3.18 (1.04–9.74) 0.041
NT-proBNP, pg/mL 1.02 (0.97–1.07) 0.34
LVEF, % 0.95 (0.92–0.98) < 0.001 0.96 (0.93–1.00) 0.057
Infarct size, % of LV mass 1.05 (1.02–1.08) < 0.001 1.04 (1.00–1.07) 0.031
MVO 2.82 (1.53–5.32) < 0.001
RAD score 3.36 (2.32–5.07) < 0.001 3.43 (2.34–5.28) < 0.001

Only variables with a P-value < 0.05 in this univariable logistic regression were included in the multivariable logistic regression analysis 
with the stepwise forward method. 
LVAR = left ventricular adverse remodeling, OR = odds ratio, CI = confidence interval, TIMI = thrombolysis in myocardial infarction, ref = 
reference, MI = myocardial infarction, HDL = high-density lipoproteins, NT-proBNP = N-terminal pro-B-type natriuretic peptide, LVEF = left 
ventricular ejection fraction, LV = left ventricular, MVO = microvascular obstruction, RAD = radiomics score 

Table 4. Performance of combined models in predicting LVAR

Models
Training 

P
Testing 

P
AUC (95% CI) AUC (95% CI)

LVEF 0.65 (0.55–0.76) 0.68 (0.52–0.84)
RAD score 0.82 (0.75–0.89) 0.75 (0.62–0.89)
Model 1: RAD score + LVEF 0.83 (0.76–0.90) < 0.001* 0.82 (0.70–0.93) 0.018*
Model 2: LGE-CMR + LVEF 0.68 (0.59–0.78) 0.007† 0.79 (0.65–0.94) 0.727†

Features incorporated into the LGE-CMR + LVEF group included microvascular obstruction, infarct size, and LVEF.
*Comparison: Model 1 vs. LVEF, †Comparison: Model 1 vs. Model 2.
LVAR = left ventricular adverse remodeling, AUC = area under the curve, CI = confidence interval, LVEF = left ventricular ejection fraction, 
RAD = radiomics score, LGE = late gadolinium enhancement, CMR = cardiovascular magnetic resonance 
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Fig. 2. Performance for predicting left ventricular adverse remodeling. Features incorporated into the LGE-CMR +LVEF group included 
microvascular obstruction, infarct size, and LVEF. ROC analyses for Adverse Remodeling versus No Adverse Remodeling in the training (A) 
and testing (B) datasets. The calibration curves demonstrate good calibration for predicting adverse LV remodeling in the training and 
testing sets (C). LGE = late gadolinium enhancement, CMR = cardiovascular magnetic resonance, LVEF = left ventricular ejection fraction, 
ROC = receiver operating characteristic, LV = left ventricular, AUC = area under the curve, RAD = radiomics score

Fig. 3. Decision curve analysis for the RAD score + LVEF, LGE-CMR + LVEF and LVEF in predicting LVAR. Features incorporated into the 
LGE-CMR + LVEF group included microvascular obstruction, infarct size, and LVEF. Decision curve analysis for the models in predicting 
LVAR in the training (A) and testing (B) sets. RAD = radiomics score, LVEF = left ventricular ejection fraction, LGE = late gadolinium 
enhancement, CMR = cardiovascular magnetic resonance, LVAR = left ventricular adverse remodeling 
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CI) for the combined RAD score and LVEF was comparable 
to the addition of traditional CMR parameters (Model 2; 
AUC, 0.79; 95% CI, 0.65–0.94) (P = 0.727) to predict LVAR. 
The ROC curves for LGE-CMR + LVEF (MVO, infarct size, and 
LVEF), LVEF + RAD score, and RAD score are shown in Figure 
2A, B. Good calibration to predict the LVAR obtained with 
the LVEF + RAD score variable in both the training and 
testing sets is shown in Figure 2C. 

Besides, we have constructed models using logistic 
regression with five-fold cross-validation in the training 
set, during which “optuna” (https://optuna.org/) was used 

for searching optimal hyperparameters. The results for the 
training and testing sets were consistent with those of 
the random-split sample method (Supplementary Table 4). 
Decision curve analysis (DCA; Fig. 3) confirmed that the RAD 
score + LVEF yielded a greater net benefit from predicting 
LVAR than LVEF alone (both in the training and testing sets) 
and was comparable to the inclusion of LGE-CMR parameters 
(outperforming LGE-CMR + LVEF in the training set and 
comparable in the testing set) across the majority of the 
range of reasonable threshold probabilities.

The relationship between the nine selected radiomics 

https://optuna.org/
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features, MVO, and infarct size was also evaluated. Only two 
of the nine radiomic features selected differed significantly 
between patients with and without MVO (Supplementary 
Fig. 3). By comparison, five features differed significantly 
between the high and low infarct size groups, classified 
according to the best cutoff infarct size value of > 25.76% 
LV mass (Supplementary Fig. 4). 

DISCUSSION

In this study, we investigated the role of cine image-
derived-radiomics in predicting LVAR following PCI in 
patients with acute STEMI. Radiomics features provided 
incremental values for LVEF alone in predicting LVAR. LVAR, 
characterized by eccentric hypertrophy and expansion of 
infarct size and LV volume, is associated with progressive 
heart failure after MI [2,3]. The association between 
adverse remodeling and all-cause mortality and heart 
failure varied by different cutoff values for LVAR. The 
definition of LVAR is essential when attempting to establish 
a predictive score or model. In this study, we followed 
the echocardiography-defined criteria (≥ 20% increase in 
LV-EDV from baseline), which have been widely used in 
CMR studies exploring the predictors of LVAR [19,22]. The 
extent of myocardial ischemia-reperfusion injury is a crucial 
determinant of LVAR and cardiovascular outcomes [6]. 
CMR provides comprehensive tissue characterization and 
functional analysis of the myocardium after MI. In patients 
with reperfused acute MI, CMR has been shown to track the 
remodeling process accurately [23]. Therefore, it is essential 
to consider the histological changes in the myocardium 
when assessing the risk of LVAR. However, LGE-CMR is 
contraindicated in patients with severe renal damage and 
involves difficulties that are challenging for both patients 
and radiologists, such as extended lying down and repeated 
breath-holding training during examinations. Using cine 
images to investigate potential prognostic information is of 
great value for simplifying CMR examinations and making 
them available to broader patients.

Advances in radiomics have recently paved the way for 
quantitative analysis of alterations in myocardial tissue, 
allowing medical images to be mined to extract quantitative 
features. Several studies have investigated the diagnostic 
performance of radiomic signatures in myocardial injuries. 
Chen et al. [24] demonstrated that radiomic signatures of 
extracellular volume fraction (ECV) mapping could distinguish 
between reversible and irreversible myocardial injuries, with 

an AUC of 0.91. Moreover, radiomic features of myocardial 
injury have been significantly associated with LVAR at the 
6-month follow-up post-MI, with the combination of the 
radiomic signature of T1 mapping and T1 values providing 
a higher diagnostic value for MVO than T1 alone [25]. In 
patients with non-ischemic dilated cardiomyopathy, a study 
reported that a combination of T1 mapping-based radiomics 
features and LGE parameters accurately predicted the LVAR 
risk, with an AUC of 0.81 [26]. Notably, the radiomic features 
in that study were derived from a single T1 mapping image of 
the midventricular short axis. In contrast, our study defined 
a ROI encompassing multiple LV myocardial segments, and 
a portion of the extracted radiomic features was based on 
3D analysis. In addition to the radiomic analysis of ECV and 
T1 mapping, radiomic signatures from cine images can be 
used to identify myocardial alterations post-MI at the tissue 
level. In comparison to scar size and location, Kotu et al. 
[27] showed that radiomic features extracted from LGE-CMR 
offer incremental value in predicting the risk of arrhythmias. 
However, few studies have investigated the value of radiomic 
analysis, particularly radiomic signatures extracted from non-
contrast cine images, in predicting LVAR. To the best of our 
knowledge, this study is the first to explore an alternative 
method of radiomic analysis of non-contrast cine images to 
predict the risk of LVAR after PCI in patients with acute STEMI. 

The quantitative characterization of pixel distribution 
in images, defined as radiomic signatures, offers new 
information on the relationship between individual 
heterogeneity and clinical outcomes. Our preliminary 
findings help define a unique radiomics signature to predict 
LVAR post-PCI after acute STEMI. The radiomics features 
included in our model were of three types: shape-based 
radiomics signatures, histogram-based first-order texture 
features, and spatial distributions of signal intensities. 
First-order texture features provide general signal intensity 
characteristics, whereas features such as the grey-level run 
length matrix (GLRLM) describe the spatial relationship 
between voxels [12]. However, we could not identify 
the precise relationship between radiomics features and 
histological changes because we did not directly associate 
these radiomics features with the histopathological 
alterations of the myocardium in our study. 

Our findings indicate that cine image-based radiomic 
analysis of the myocardium is reliable and consistent. Our 
study followed a standard radiomics procedure by delineating 
multiple LV myocardial segments. Most previous radiomic 
analyses of CMR have been based on single or three cross-
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sections, whereas information on the adjacent myocardium 
has been ignored [24,25,28,29]. Additionally, we performed 
LV myocardium segmentation semi-automatically using post-
processing software and then masked the ROIs within the 
contour, which lowered the impact of artifacts related to 
the manual delineation of the ROIs. The RAD score yielded 
favorable performance in predicting LVAR after MI and thus 
may be a promising tool for identifying patients at higher 
risk for LVAR post-PCI after acute STEMI. To our knowledge, 
our study included one of the largest cohorts with follow-
up CMR to investigate the association between radiomic 
signatures and LVAR. 

The limitations of this study should be acknowledged. 
First, although our study included a sufficiently large sample 
size to develop a radiomics-based tool for assessing the risk 
of LVAR post-PCI after acute STEMI, selection bias cannot 
be ruled out, as all patients were treated at Chinese People’s 
Liberation Army General Hospital and were retrospectively 
selected. Second, our radiomic analysis was performed at 
a single institution using a single type of MRI scanner 
(1.5T), which limits the generalizability of the study results. 
Therefore, prospective studies are required for the external 
validation of our findings and the generalizability of our 
radiomics model for clinical utility. The extracted radiomic 
features were based on end-diastolic LV myocardium and 
therefore did not account for previous findings of variability 
in radiomic features extracted at different times [30]. 
Therefore, the prognostic value of features extracted during 
other periods requires further study. Third, more clinical 
features such as soluble suppression of tumorigenesis-2 
and other enzymatic markers during hospitalization have 
been reported as independent predictors of LVAR in Acute 
MI [31]. Although we could not consider all the previously 
reported features associated with LVAR, we included as 
many available predictors as possible. Future studies 
should compare radiomic analysis with other non-contrast 
techniques, such as T1 or T2 mapping techniques.

In summary, radiomics signatures from non-contrast 
cine CMR can predict LVAR after STEMI independently and 
incrementally to LVEF and may provide an alternative to 
traditional CMR parameters. 
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