• Title/Summary/Keyword: Regression models

Search Result 3,638, Processing Time 0.03 seconds

Accident Models of Circular Intersections by Weather Condition in Korea (기상상태에 따른 국내 원형교차로 사고모형)

  • Park, Byung Ho;Han, Su San
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.178-184
    • /
    • 2012
  • This study deals with the traffic accidents by weather condition. The objectives are to comparatively analyze the characteristics, and to develop the models of traffic accidents by weather condition. In pursuing the above, this paper gives particular attentions to testing the differences between two groups, and developing the models(Poisson and negative binomial regression) using the data of domestic circular intersections. The main results are as follows. First, three Poisson models and one negative binomial models which were all statistically significant were developed using the number of accident and EPDO by the clear weather and other as the dependant variables. Second, the differences between two models were comparatively analyzed using the chosen variables. This paper might be expected to give some implications to traffic safety policy-making to reduce and prevent the traffic accidents in circular intersections.

Dual Generalized Maximum Entropy Estimation for Panel Data Regression Models

  • Lee, Jaejun;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.395-409
    • /
    • 2014
  • Data limited, partial, or incomplete are known as an ill-posed problem. If the data with ill-posed problems are analyzed by traditional statistical methods, the results obviously are not reliable and lead to erroneous interpretations. To overcome these problems, we propose a dual generalized maximum entropy (dual GME) estimator for panel data regression models based on an unconstrained dual Lagrange multiplier method. Monte Carlo simulations for panel data regression models with exogeneity, endogeneity, or/and collinearity show that the dual GME estimator outperforms several other estimators such as using least squares and instruments even in small samples. We believe that our dual GME procedure developed for the panel data regression framework will be useful to analyze ill-posed and endogenous data sets.

On Rice Estimator in Simple Regression Models with Outliers (이상치가 존재하는 단순회귀모형에서 Rice 추정량에 관해서)

  • Park, Chun Gun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.511-520
    • /
    • 2013
  • Detection outliers and robust estimators are crucial in regression models with outliers. In such studies the focus is on detecting outliers and estimating the coefficients using leave-one-out. Our study introduces Rice estimator which is an error variance estimator without estimating the coefficients. In particular, we study a comparison of the statistical properties for Rice estimator with and without outliers in simple regression models.

Comparison of Classification Models for Sequential Flight Test Results (단계별 비행훈련 성패 예측 모형의 성능 비교 연구)

  • Sohn, So-Young;Cho, Yong-Kwan;Choi, Sung-Ok;Kim, Young-Joun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • The main purpose of this paper is to present selection criteria for ROK Airforce pilot training candidates in order to save costs involved in sequential pilot training. We use classification models such Decision Tree, Logistic Regression and Neural Network based on aptitude test results of 288 ROK Air Force applicants in 1994-1996. Different models are compared in terms of classification accuracy, ROC and Lift-value. Neural network is evaluated as the best model for each sequential flight test result while Logistic regression model outperforms the rest of them for discriminating the last flight test result. Therefore we suggest a pilot selection criterion based on this logistic regression. Overall. we find that the factors such as Attention Sharing, Speed Tracking, Machine Comprehension and Instrument Reading Ability having significant effects on the flight results. We expect that the use of our criteria can increase the effectiveness of flight resources.

A Comparative Study on the Spatial Statistical Models for the Estimation of Population Distribution

  • Oh, Doo-Ri;Hwang, Chul Sue
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.145-153
    • /
    • 2015
  • This study aims to accurately estimate population distribution more specifically than administrative unites using a RK (Regression-Kriging) model. The RK model is the areal interpolation technique that involves linear regression and the Kriging model. In order to estimate a population’s distribution using a sample region, four different models were used, namely; a regression model, RK model, OK (Ordinary Kriging) model and CK (Co-Kriging) model. The results were then compared with each other. Evaluation of the accuracy and validity of evaluation analysis results were the basis RMSE (Root Mean Square Error), MAE (Mean Absolute Error), G statistic and correlation coefficient (ρ). In the sample regions, every statistic value of the RK model showed better results than other models. The results of this comparative study will be useful to estimate a population distribution of the metropolitan areas with high population density

Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation

  • Lee, Juhee;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.627-641
    • /
    • 2021
  • An asymmetric least squares estimation method has been employed to estimate linear models for percentile regression. An asymmetric maximum likelihood estimation (AMLE) has been developed for the estimation of Poisson percentile linear models. In this study, we propose generalized nonlinear percentile regression using the AMLE, and the use of the parametric bootstrap method to obtain confidence intervals for the estimates of parameters of interest and smoothing functions of estimates. We consider three conditional distributions of response variables given covariates such as normal, exponential, and Poisson for three mean functions with one linear and two nonlinear models in the simulation studies. The proposed method provides reasonable estimates and confidence interval estimates of parameters, and comparable Monte Carlo asymptotic performance along with the sample size and quantiles. We illustrate applications of the proposed method using real-life data from chemical and radiation epidemiological studies.

Optimal Process Parameters for Achieving the Desired Top-Bead Width in GMA welding Process (GMA 용접의 윗면 비드폭 선정을 위한 최적 공정변수들)

  • ;Prasad
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.89-96
    • /
    • 2002
  • This paper aims to develop an intelligent model for predicting top-bead width for the robotic GMA(Gas Metal Arc) welding process using BP(Back-propagation) neural network and multiple regression analysis. Firstly, based on experimental data, the basic factors affecting top-bead width are identified. Then BP neural network model and multiple regression models of top-bead width are established. The modeling methods and procedure are explained. The developed models are then verified by data obtained from the additional experiment and the predictive behaviors of the two kind of models are compared and analysed. Finally the modeling methods, predictive behaviors md the advantages of each models are discussed.

Marginal Likelihoods for Bayesian Poisson Regression Models

  • Kim, Hyun-Joong;Balgobin Nandram;Kim, Seong-Jun;Choi, Il-Su;Ahn, Yun-Kee;Kim, Chul-Eung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.381-397
    • /
    • 2004
  • The marginal likelihood has become an important tool for model selection in Bayesian analysis because it can be used to rank the models. We discuss the marginal likelihood for Poisson regression models that are potentially useful in small area estimation. Computation in these models is intensive and it requires an implementation of Markov chain Monte Carlo (MCMC) methods. Using importance sampling and multivariate density estimation, we demonstrate a computation of the marginal likelihood through an output analysis from an MCMC sampler.

A study on solar irradiance forecasting with weather variables (기상변수를 활용한 일사량 예측 연구)

  • Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.1005-1013
    • /
    • 2017
  • In this paper, we investigate the performances of time series models to forecast irradiance that consider weather variables such as temperature, humidity, cloud cover and Global Horizontal Irradiance. We first introduce the time series models and show that regression ARIMAX has the best performance with other models such as ARIMA and multiple regression models.

Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India

  • Roshni, Thendiyath;K., Md. Sajid;Samui, Pijush
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.319-328
    • /
    • 2017
  • Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.