• Title/Summary/Keyword: Regression model with dependent errors

Search Result 15, Processing Time 0.021 seconds

The Asymptotic Unbiasedness of $S^2$ in the Linear Regression Model with Dependent Errors

  • Lee, Sang-Yeol;Kim, Young-Won
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • The ordinary least squares estimator of the disturbance variance in the linear regression model with stationary errors is shown to be asymptotically unbiased when the error process has a spectral density bounded from the above and away from zero. Such error processes cover a broad class of stationary processes, including ARMA processes.

  • PDF

Application of Logit Model in Qualitative Dependent Variables (로짓모형을 이용한 질적 종속변수의 분석)

  • Lee, Kil-Soon;Yu, Wann
    • Journal of Families and Better Life
    • /
    • v.10 no.1 s.19
    • /
    • pp.131-138
    • /
    • 1992
  • Regression analysis has become a standard statistical tool in the behavioral science. Because of its widespread popularity. regression has been often misused. Such is the case when the dependent variable is a qualitative measure rather than a continuous, interval measure. Regression estimates with a qualitative dependent variable does not meet the assumptions underlying regression. It can lead to serious errors in the standard statistical inference. Logit model is recommended as alternatives to the regression model for qualitative dependent variables. Researchers can employ this model to measure the relationship between independent variables and qualitative dependent variables without assuming that logit model was derived from probabilistic choice theory. Coefficients in logit model are typically estimated by the method of Maximum Likelihood Estimation in contrast to ordinary regression model which estimated by the method of Least Squares Estimation. Goodness of fit in logit model is based on the likelihood ratio statistics and the t-statistics is used for testing the null hypothesis.

  • PDF

Average Mean Square Error of Prediction for a Multiple Functional Relationship Model

  • Yum, Bong-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.13 no.2
    • /
    • pp.107-113
    • /
    • 1984
  • In a linear regression model the idependent variables are frequently subject to measurement errors. For this case, the problem of estimating unknown parameters has been extensively discussed in the literature while very few has been concerned with the effect of measurement errors on prediction. This paper investigates the behavior of the predicted values of the dependent variable in terms of the average mean square error of prediction (AMSEP). AMSEP may be used as a criterion for selecting an appropriate estimation method, for designing an estimation experiment, and for developing cost-effective future sampling schemes.

  • PDF

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.

Remarks on correlated error tests

  • Kim, Tae Yoon;Ha, Jeongcheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.559-564
    • /
    • 2016
  • The Durbin-Watson (DW) test in regression model and the Ljung-Box (LB) test in ARMA (autoregressive moving average) model are typical examples of correlated error tests. The DW test is used for detecting autocorrelation of errors using the residuals from a regression analysis. The LB test is used for specifying the correct ARMA model using the first some sample autocorrelations based on the residuals of a tted ARMA model. In this article, simulations with four data generating processes have been carried out to evaluate their performances as correlated error tests. Our simulations show that the DW test is severely dependent on the assumed AR(1) model but isn't sensitive enough to reject the misspecified model and that the LB test reports lackluster performance in general.

A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis (다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구)

  • 김태철;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

A Study on the Determinants of Imbalanced Regional Development : An Application of Regression Model for a Bias due to Heterogeneity across Region (지역 불균형 발전의 결정요인 : 지역간 이질성 편의를 고려한 희귀모형의 적용)

  • 박범조;고석찬
    • Journal of the Korean Regional Science Association
    • /
    • v.14 no.2
    • /
    • pp.35-50
    • /
    • 1998
  • This paper examines the determinants of imbalanced regional development in Korea during the period of 1985-1995. The review of previous analytical techniques have been used to analyze the determinants of disparities in regional development of disparities in regional development, but few has applied the regression technique which reduces a bias due to heterogeneity across region. The results of the study show that Kmenta model with per capita GRDP as dependent variable can reduce the heterogeneity bias in regional development and can minimize the statical errors in estimation and interpretation of the coefficients of the explanatory variables. According to the results of Kmenta model, urban infrastructure such as roads, information and communication facilities are major causes of regional disparity over the period of 1985-1995. The results of the study also indicate that local government should devote their policy efforts to identify and utilize the unique soci-economic characteristics of each locality in the process of regional development.

  • PDF

An Application of a New Two-Way Regression Model for Rating Curves (수위-유량관계식에 새로운 양방향 회귀모형의 적용)

  • Lee, Chang-Hae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.1
    • /
    • pp.17-25
    • /
    • 2008
  • Whether rating curves are used in practice or new ones are derived, the characteristics of regression analysis are often neglected. For example, a discharge rating curve, which is established from a regression of observed water levels (H) on observed flowrates(Q), is sometimes used for estimating a design water level corresponding to a simulated design flood runoff. However, if independent and dependent variables are changed with each other, the regression equation is changed in existing regression analysis, which is derived from vertical errors between observed data and regression line. Thus, regression equations should not be applied inversely. To avoid this problem, A new two-way variable least-squares regression analysis is proposed. The new method was applied to the rating curves of five water level stations on main stream of Nakdong River. The three kinds of regression models, which are respectively regression of Q versus H (model 1), H versus Q (model 2) and two-way (model 3), showed that the new method can reduce inadvertent mistakes when applied in practice.

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

Developing Trip Generation Models Considering Land Use Characteristics (토지이용 특성을 반영한 통행발생모형 추정 연구)

  • Song, Jae-In;Na, Seung-Won;Choo, Sang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.126-139
    • /
    • 2011
  • In the traditional four-step travel demand models, each step is sequentially conducted following the model estimation at the previous step. The accuracy of the following model is partly dependent on whether the model at the former stage was properly established or not. Therefore, trip generation, which is the first step in this conventional model, has great effects on the modeling process and forecasting results. Linear regression models for trip generation of Seoul Metropolitan Area might increase the forcasting errors, since a variety of land-use characteristics are not considered. Hence, in this study, zonal factors such as socioeconomic and land use variables are included to improve the elaboration of trip generation. Comparing the %RMSE with the existing models, which contain bigger errors in the zones highly based on the secondary and tertiary industries than residence-based, the trip generation models including those variables seem more appropriate overall.