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Abstract

The Durbin-Watson (DW) test in regression model and the Ljung-Box (LB) test in
ARMA (autoregressive moving average) model are typical examples of correlated error
tests. The DW test is used for detecting autocorrelation of errors using the residuals
from a regression analysis. The LB test is used for specifying the correct ARMA model
using the first some sample autocorrelations based on the residuals of a fitted ARMA
model. In this article, simulations with four data generating processes have been car-
ried out to evaluate their performances as correlated error tests. Our simulations show
that the DW test is severely dependent on the assumed AR(1) model but isn’t sensi-
tive enough to reject the misspecified model and that the LB test reports lackluster
performance in general.
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1. Introduction

In a regression model, a basic assumption is that error terms in the regression model
are independent. When this assumption-among others-is satisfied, the regression function
recovery procedure such as least square method is valid and a great deal of its use has been
made. In other words, it might be said that the regression function recovery procedures
are eventually meant to recover the independence of residuals. Along this line of argument,
whether the residuals after a given model fitting achieves independence has been regarded
as a critical step for proper model specification. There have been two popular methods
checking residual independence in the literatures; the Durbin-Watson (DW) test in linear
regression model and the Ljung-Box (LB) test in ARMA (autoregressive moving average)
model (Ljung and Box, 1978). The DW test is established in the residuals from a regression
analysis. The small sample distribution of this test was derived by on Neumann (1941)
under the null. Durbin and Watson (1950, 1951) applied this test to the residuals from
least square regressions, and developed a bound test for the null hypothesis that the errors
are serially uncorrelated against the alternative that they follow a first order autoregressive
process. The LB test is commonly used in ARMA modeling. It is applied to the residuals
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of a fitted ARMA model, not the original series, and in such applications the hypothesis
actually being tested is that the residuals from the ARMA model have no autocorrelation.
Since autocorrelation makes the underlying model difficult to discern, various efforts have
been conducted (Hwang, 2014; Ha, 2015).

The DW test calculates its asymptotic distribution under AR(1) error assumption while
the LB test calculates the null distributions under the iid error. For the LB test, it has
been frequently noticed that asymptotic distribution has less variance than expected. See,
for instance, Pena and Rodriguez (2002).

In this article, we are mainly concerned about investigating the strength or weakness of
these two tests via simulations. Section 2 discusses the DW test and the LB test separately.
Section 3 provides simulation works supporting our findings.

2. Correlated error tests

2.1. Durbin-Watson test

To derive a suitable test criterion, it is important to consider the set of alternative hy-
potheses against which it is desired to discriminate. The concerning alternative for DW test
is the stationary Markov process

εi = ρεi−1 + ui (i = · · · ,−1, 0, 1, · · · ) (2.1)

where |ρ| < 1 and ui is normal with mean zero and variance σ2
u and is independent of

ui−1, ui−2, · · · . The null hypothesis is then the hypothesis that ρ = 0 in (2.1). It is known
that for certain regression problems with error distributions close to that given by (2.1)
tests can be obtained which are uniformly most powerful against one-sided alternatives and
which give regions for two-sided alternatives. The DW is derived based on such theoretical
background (Durbin and Watson, 1950; 1951).

To test for positive autocorrelation at significance level α, that is H0 : ρ = 0 versus
H1 : ρ > 0, the test statistic which is calculated by the residuals {ei}

dn =

n∑
i=2

(ei − ei−1)2

n∑
i=1

e2i

is compared to lower and upper critical values (d
(n)
L,α and d

(n)
U,α):

• If dn < d
(n)
L,α, there is statistical evidence that the error terms are positively autocor-

related.

• If dn > d
(n)
U,α, there is no statistical evidence that the error terms are positively auto-

correlated.

• If d
(n)
L,α < dn < d

(n)
U,α, the test is inconclusive.

Positive serial correlation is serial correlation in which a positive error for one observation
increases the chances of a positive error for another observation.

To test for negative autocorrelation at significance α, that is H0 : ρ = 0 versus H1 : ρ < 0,

the test statistic (4− dn) is compared to lower and upper critical values (d
(n)
L,α and d

(n)
U,α):
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• If (4 − dn) < d
(n)
L,α, there is statistical evidence that the error terms are negatively

autocorrelated.

• If (4− dn) > d
(n)
U,α, there is no statistical evidence that the error terms are negatively

autocorrelated.

• If d
(n)
L,α < (4− dn) < d

(n)
U,α, the test is inconclusive.

Negative serial correlation implies that a positive error for one observation increases the
chance of a negative error for another observation and a negative error for one observation
increases the chances of a positive error for another.

The critical values, d
(n)
L,α and d

(n)
U,α vary by the level of significance (α), number of observa-

tions, and number of predictors in the regression equation. Their derivation under the null
is complex and statisticians typically obtain them from the appendices of statistical texts.
Actually these two significance points or bounds are obtained by quite accurate approxima-
tion to the distribution of dn. The bounds are known to be ‘best’ in two senses: first they
can be attained, and secondly when they are attained the test criterion adopted is uniformly
most powerful against suitable alternative hypotheses.

2.2. Ljung-Box test

Given a discrete time series Zt, Zt−1, Zt−2, · · · and using B for the backward shift operator
such that BZt = Zt−1, a general autoregressive integrated moving average (ARIMA) model
of order (p, r, q) may be written

φ(B)∇rZt = θ(B)εt (2.2)

where φ(B) = 1 − φ1B − · · · − φpBp and θ(B) = 1 − θ1B − · · · − θqBq, εt is a sequence
of independent errors with common variance σ2

u, to be referred to as ‘white noise’, and
where the roots of φ(B) = 0 and θ(B) = 0 lie outside the unit circle. In other words, if
Xt = ∇rZt = (1 − B)rZt, is the rth difference of the series Zt, then Xt is a stationary,
invertible, mixed autoregressive moving average process given by

Xt =

p∑
i=1

φiXt−i −
q∑
j=1

θjεt−j + εt (2.3)

and permitting r > 0 allows the original series to be (homogeneously) nonstationary. In
some instances the model (2.2) will be appropriate after a suitable transformation is made
on Z; in others Z may represent the noise structure after allowing for some systematic model
(Box and Pierce, 1970).

After a model of this form has been fitted to a series X1, · · · , Xn, it is useful to study
the adequacy of the fit by examining the residuals e1, · · · , en, and, in particular, their auto-
correlations

r̂k =

n∑
t=k+1

etet−k/

n∑
t=1

e2t (k = 1, 2, · · · ).

Note that r̂k is obtained as a least square estimator of rk from

ei = rkei−k + ui (i = · · · ,−1, 0, 1, · · · , k = 1, 2, · · · ) (2.4)
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An informal graphical analysis of these quantities combined with overfitting is usually known
to be most effective in detecting possible deficiencies in the model. Furthermore, it is known
that when the p+ q parameters of an appropriate model are estimated, then under the null
hypothesis for the autocorrelations of {εt}, that is, ρ1 = ρ2 = · · · = ρm = 0,

Qn(r̂) = n(n+ 2)

m∑
k=1

(n− k)−1r̂2k ⇒ χ2
m−p−q (2.5)

yielding an approximate test for lack of fit. Note that asymptotic distribution derivation of
Qn(r̂) does not depend on the estimation method employed for ARIMA.

3. Simulation

In this section we perform simulations in order to see the behavior of the test statistics as
a measure for model specification. That is, null hypothesis is the imposed model explains the
DGP correctly rather than the original hypothesis of DW and LB. Our simulation results
will provide useful insights into error correlation test problems. Basically we are concerned
in applying and comparing two error correlation tests; DW test dn and LB test Qn. We set
m in Qn as a minimum of 10 and half of the sample size, which is large enough to cover the
order of autocorrelation concerned.

We consider four cases and each cases are summarized in Table 3.1. (i) linear regres-
sion model is correctly imposed but data generating process (DGP) is contaminated with
correlated errors (Table 3.2). (ii) linear regression model is wrongly imposed when DGP
is generated by a quadratic function plus error (Table 3.3). (iii) AR(1) model is correctly
imposed on the underlying DGP (Table 3.4). (iv) AR(1) model is wrongly imposed on the
underlying DGP (Table 3.5).

In view of model specification we consider that (i) and (iii) are the cases when null hy-
pothesis holds and that (ii) and (iv) are the cases when alternative hypothesis holds. From
the relation with DGP and imposed model, Tables 3.2 and 3.3 report the cases where DW
is expected to function and Tables 3.4 and 3.5 report the cases where LB is expected to
function. We use R 3.1.2 and experimental simulations are repeated 1000 times at sample
size n = 10, 30, 50 and 100 in each case.

Table 3.1 DGP and imposed model for each case.

DGP Imposed model
(i) Yt = 1 + 2xt + εt with εt = φεt−1 + ut Yt = a+ bxt + εt
(ii) Yt = 1 − xt + x2t + ut Yt = a+ bxt + εt
(iii) Xt = φXt−1 + ut Xt = a+ bXt−1 + εt
(iv) Xt = φXt−1 + ut + θut−1 Xt = a+ bXt−1 + εt

Table 3.2 Simulated power and size comparison of dn and Qn for testing correlated error at α = 0.05
when linear regression model is imposed for data generating process Yt = 1 + 2xt + εt where

εt = φεt−1 + ut and iid ut ∼ N(0, σ2).

dn Qn

σ n φ = −0.5 φ = 0 φ = 0.5 φ = −0.5 φ = 0 φ = 0.5
10 0.309 0.058 0.259 0.383 0.16 0.218

0.1 30 0.821 0.048 0.753 0.633 0.125 0.453
50 0.948 0.054 0.948 0.817 0.125 0.676
100 1 0.054 0.999 0.984 0.099 0.958
10 0.288 0.048 0.251 0.375 0.176 0.223

1 30 0.812 0.062 0.794 0.604 0.122 0.499
50 0.957 0.04 0.94 0.811 0.103 0.693
100 0.999 0.055 1 0.977 0.097 0.961
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At Table 3.2, DGP is Yt = 1 + 2xt + εt where xt = t/n, εt = φεt−1 + ut and ut ∼ N(0, σ2)
is iid. We generate Yt for φ = −0.5, 0, 0.5 and σ = 0.1, 1. Note here that φ = 0 corresponds
to iid error. A classical linear regression analysis is done for practicing DW dn and LB Qn
in checking correlated error with significance level α = 0.05. Table 3.2 shows that DW is
very sensitive to correlated error (φ = −0.5, 0.5) and rejects the correctly imposed model
whenever it is contaminated with the correlated error, which is normal in the ordinary
hypothesis of DW. In other words, DW accepts the correctly imposed model only when the
true DGP is with iid error (φ = 0). LB reports similar results but its level of performance
is not so precise as DW.

Table 3.3 Simulated power comparison of dn and Qn for testing correlated error at α = 0.05 when linear
regression model is imposed and data generating process is Yt = 1 − xt + x2t + ut with iid ut ∼ N(0, σ2).

dn Qn

n σ = 0.1 σ = 1 σ = 2 σ = 0.1 σ = 1 σ = 2
10 0.361 0.047 0.048 0.182 0.171 0.188
30 0.674 0.06 0.048 0.255 0.125 0.118
50 0.834 0.05 0.037 0.66 0.096 0.117
100 0.975 0.075 0.047 0.995 0.105 0.097

At Table 3.3, DGP is Yt = 1 − xt + x2t + ut where xt = t/n and ut ∼ N(0, σ2) is iid.
We generate Yt for σ = 0.1, 1, 2. Note here that correlated error is not considered. Again, a
classical linear regression analysis is done for practicing DW dn and LB Qn with significance
level α = 0.05. Table 3.3 shows that DW is not sensitive enough to reject the wrongly
imposed model particularly when error variance σ2 is relatively large (σ2 = 1, 4). LB reports
similar results but its performance is relatively less misleading (accurate) than DW when σ2

is large (small). This shows that checking error correlatedness would not be a good measure
for model specification.

Table 3.4 Simulated power comparison of dn and Qn for testing correlated error at α = 0.05 when AR(1)
model is imposed and data generating process is Xt = φXt−1 + ut with iid ut ∼ N(0, σ2).

dn Qn

σ n φ = −0.5 φ = −0.1 φ = 0.1 φ = 0.5 φ = −0.5 φ = −0.1 φ = 0.1 φ = 0.5
10 0.01 0.012 0.002 0.02 0.057 0.038 0.054 0.055

0.1 30 0.006 0 0 0.008 0.052 0.044 0.044 0.059
50 0.005 0 0 0.001 0.062 0.045 0.054 0.052
100 0.002 0 0 0.002 0.053 0.051 0.049 0.053
10 0.008 0.002 0.006 0.015 0.04 0.059 0.041 0.044

1 30 0.004 0 0.001 0.008 0.049 0.074 0.057 0.064
50 0.001 0 0 0.001 0.058 0.047 0.05 0.044
100 0 0 0 0.001 0.041 0.059 0.058 0.06

At Table 3.4, DGP is Xt = φXt−1 + ut with iid ut ∼ N(0, σ2). We generate Xt for
φ = −0.5,−0.1, 0.1, 0.5 and σ = 0.1, 1. Note here that φ = 0 (iid error, equivalently) is not
considered. A classical least square parameter estimation for the imposed AR(1) model is
done for practicing DW dn and LB Qn in checking correlated error with significance level
α = 0.05. Table 3.4 shows that LB performs reasonably well in accepting the correctly
imposed model across various values of φ and σ2. DW almost always accepts the correctly
imposed model regardless of value of φ and σ2.
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Table 3.5 Simulated power comparison of dn and Qn for testing correlated error at size α = 0.05 when
AR(1) model is imposed and data generating process is Xt = φXt−1 + ut + θut−1 with iid ut ∼ N(0, σ2).

dn(φ, θ) Qn(φ, θ)
σ n (-0.5,-0.3) (-0.5,0.3) (-0.1,-0.3) (-0.1,0.3) (-0.5,-0.3) (-0.5,0.3) (-0.1,-0.3) (-0.1,0.3)

10 0.02 0.011 0.005 0.005 0.082 0.042 0.064 0.069
0.1 30 0.063 0.001 0.001 0.008 0.131 0.059 0.074 0.082

50 0.116 0.001 0.002 0.001 0.16 0.045 0.08 0.095
100 0.238 0 0 0 0.221 0.063 0.068 0.083
10 0.061 0.029 0.005 0.011 0.089 0.086 0.047 0.072

1 30 0.108 0.045 0.002 0 0.122 0.134 0.069 0.114
50 0.168 0.113 0.001 0 0.152 0.164 0.054 0.106
100 0.334 0.268 0.001 0 0.253 0.261 0.061 0.119

σ n (0.1,-0.3) (0.1,0.3) (0.5,-0.3) (0.5,0.3) (0.1,-0.3) (0.1,0.3) (0.5,-0.3) (0.5,0.3)
10 0.001 0.019 0.001 0.066 0.053 0.056 0.039 0.106

0.1 30 0 0.006 0 0.119 0.078 0.082 0.044 0.12
50 0 0.003 0 0.174 0.073 0.096 0.053 0.156
100 0 0.003 0 0.348 0.077 0.133 0.048 0.241
10 0.002 0.013 0.01 0 0.061 0.053 0.035 0.047

1 30 0 0.004 0.002 0 0.079 0.071 0.052 0.049
50 0 0.004 0 0 0.063 0.099 0.047 0.052
100 0 0.005 0 0 0.077 0.096 0.06 0.044

At Table 3.5, DGP is Xt = φXt−1 + ut + θut−1 with iid ut ∼ N(0, σ2). We generate Xt

for φ = −0.5,−0.1, 0.1, 0.5, θ = −0.3, 0.3 and σ = 0.1, 1. A classical least square parameter
estimation for the imposed AR(1) model is done for practicing DW dn and LB Qn in checking
correlated error with significance level α = 0.05. Table 3.5 shows that both LB and DW fail
to perform properly in rejecting the null hypothesis.

In view of model specification our simulation results is summarized as follows. (a) DW is
very sensitive to correlated error as long as the underlying correlated error is restricted to
AR(1). (b) DW doesn’t tend to be sensitive enough to reject the wrongly imposed linear
regression model. (c) LB performs reasonably well when correct ARMA model is specified
but does not have enough sensitivity when ARMA model is wrongly specified.

The DW test only works when errors are correlated via AR(1) model and the LB test
needs to improve its level of performance. Both of them need some modifications and it will
be done in separate papers.
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