• 제목/요약/키워드: Regression model with dependent errors

검색결과 15건 처리시간 0.019초

The Asymptotic Unbiasedness of $S^2$ in the Linear Regression Model with Dependent Errors

  • Lee, Sang-Yeol;Kim, Young-Won
    • Journal of the Korean Statistical Society
    • /
    • 제25권2호
    • /
    • pp.235-241
    • /
    • 1996
  • The ordinary least squares estimator of the disturbance variance in the linear regression model with stationary errors is shown to be asymptotically unbiased when the error process has a spectral density bounded from the above and away from zero. Such error processes cover a broad class of stationary processes, including ARMA processes.

  • PDF

로짓모형을 이용한 질적 종속변수의 분석 (Application of Logit Model in Qualitative Dependent Variables)

  • 이길순;유완
    • 가정과삶의질연구
    • /
    • 제10권1호통권19호
    • /
    • pp.131-138
    • /
    • 1992
  • Regression analysis has become a standard statistical tool in the behavioral science. Because of its widespread popularity. regression has been often misused. Such is the case when the dependent variable is a qualitative measure rather than a continuous, interval measure. Regression estimates with a qualitative dependent variable does not meet the assumptions underlying regression. It can lead to serious errors in the standard statistical inference. Logit model is recommended as alternatives to the regression model for qualitative dependent variables. Researchers can employ this model to measure the relationship between independent variables and qualitative dependent variables without assuming that logit model was derived from probabilistic choice theory. Coefficients in logit model are typically estimated by the method of Maximum Likelihood Estimation in contrast to ordinary regression model which estimated by the method of Least Squares Estimation. Goodness of fit in logit model is based on the likelihood ratio statistics and the t-statistics is used for testing the null hypothesis.

  • PDF

Average Mean Square Error of Prediction for a Multiple Functional Relationship Model

  • Yum, Bong-Jin
    • Journal of the Korean Statistical Society
    • /
    • 제13권2호
    • /
    • pp.107-113
    • /
    • 1984
  • In a linear regression model the idependent variables are frequently subject to measurement errors. For this case, the problem of estimating unknown parameters has been extensively discussed in the literature while very few has been concerned with the effect of measurement errors on prediction. This paper investigates the behavior of the predicted values of the dependent variable in terms of the average mean square error of prediction (AMSEP). AMSEP may be used as a criterion for selecting an appropriate estimation method, for designing an estimation experiment, and for developing cost-effective future sampling schemes.

  • PDF

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • 제21권2호
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.

Remarks on correlated error tests

  • Kim, Tae Yoon;Ha, Jeongcheol
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.559-564
    • /
    • 2016
  • The Durbin-Watson (DW) test in regression model and the Ljung-Box (LB) test in ARMA (autoregressive moving average) model are typical examples of correlated error tests. The DW test is used for detecting autocorrelation of errors using the residuals from a regression analysis. The LB test is used for specifying the correct ARMA model using the first some sample autocorrelations based on the residuals of a tted ARMA model. In this article, simulations with four data generating processes have been carried out to evaluate their performances as correlated error tests. Our simulations show that the DW test is severely dependent on the assumed AR(1) model but isn't sensitive enough to reject the misspecified model and that the LB test reports lackluster performance in general.

다중회귀분석에 의한 하천 월 유출량의 추계학적 추정에 관한 연구 (A Study on Stochastic Estimation of Monthly Runoff by Multiple Regression Analysis)

  • 김태철;정하우
    • 한국농공학회지
    • /
    • 제22권3호
    • /
    • pp.75-87
    • /
    • 1980
  • Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.

  • PDF

지역 불균형 발전의 결정요인 : 지역간 이질성 편의를 고려한 희귀모형의 적용 (A Study on the Determinants of Imbalanced Regional Development : An Application of Regression Model for a Bias due to Heterogeneity across Region)

  • 박범조;고석찬
    • 지역연구
    • /
    • 제14권2호
    • /
    • pp.35-50
    • /
    • 1998
  • This paper examines the determinants of imbalanced regional development in Korea during the period of 1985-1995. The review of previous analytical techniques have been used to analyze the determinants of disparities in regional development of disparities in regional development, but few has applied the regression technique which reduces a bias due to heterogeneity across region. The results of the study show that Kmenta model with per capita GRDP as dependent variable can reduce the heterogeneity bias in regional development and can minimize the statical errors in estimation and interpretation of the coefficients of the explanatory variables. According to the results of Kmenta model, urban infrastructure such as roads, information and communication facilities are major causes of regional disparity over the period of 1985-1995. The results of the study also indicate that local government should devote their policy efforts to identify and utilize the unique soci-economic characteristics of each locality in the process of regional development.

  • PDF

수위-유량관계식에 새로운 양방향 회귀모형의 적용 (An Application of a New Two-Way Regression Model for Rating Curves)

  • 이창해
    • 한국수자원학회논문집
    • /
    • 제41권1호
    • /
    • pp.17-25
    • /
    • 2008
  • 수위-유량관계식의 유도와 실무적용에 있어 통상적으로 회귀분석의 특성을 간과하고 사용하는 경우가 종종 발생한다. 예를 들어 실무에서는 관측수위로부터 관측유량으로 회귀분석되어 만들어진 수위-유량관계식을 홍수모형으로부터 모의된 설계홍수유출량으로부터 설계홍수위를 환산하는데 사용되기도 한다. 그러나 독립과 종속변수가 서로 바뀌면, 관측치와 회귀식간 연직거리의 잔차들로부터 유도된 기존의 회귀분석에 의하여, 회귀식이 서로 달라지기 때문에 역으로 적용하여서는 안 된다. 본 연구에서는 이런 문제점을 해결하기위해 회귀식의 변수들을 상호 교환할 수 있는 최소자승 회귀분석의 새로운 알고리즘을 제안하였다. 새로운 방법을 낙동강유역의 본류 5개 수위표지점의 수위-유량관계식에 대하여 적용하였다. 3가지 회귀식이 유도되었는데, 이들은 각각 수위로부터 유량으로(model 1), 유량으로부터 수위로(model 2) 그리고 양방향(model 3)으로 유도된 수위-유량관계식을 비교하여 실무에서 잘못 적용되는 실수를 줄일 수 있는 새로운 방법을 제시하였다.

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

토지이용 특성을 반영한 통행발생모형 추정 연구 (Developing Trip Generation Models Considering Land Use Characteristics)

  • 송재인;나승원;추상호
    • 한국ITS학회 논문지
    • /
    • 제10권6호
    • /
    • pp.126-139
    • /
    • 2011
  • 4단계 교통수요 추정법은 순차성에 의해 선행단계의 추정결과에 근거하여 모형을 수립한다. 그러므로 전 단계에서 정확한 분석이 이루어지지 않으면 다음 단계에서의 정확한 분석 결과를 기대하기 어렵다. 특히 통행발생은 4단계모형의 첫번째 단계로 이 단계의 추정결과에 따라 전체 수요예측에 크게 영향을 미치는 것을 알 수 있다. 기존 수도권 통행발생모형은 선형회귀 모형식을 이용하여 서울 및 수도권지역의 통행발생모형을 구축하였으나 다양한 토지이용 특성을 반영하지 못한다는 단점을 가지고 있으며, 4단계 모형에서 발생되는 오차를 크게 하는 요인으로 작용하고 있다. 따라서 본 연구는 기존 통행발생모형의 한계를 개선하기 위해 토지이용 특성을 반영한 통행발생모형을 구축하고자 한다. 모형 개선을 위해 존의 사회경제지표 및 토지이용을 변수로 사용하였고, 검증을 위해 기존모형식과 RMSE%값을 비교분석하였다. 그 결과 기존모형은 주거 특성이 강한지역의 추정에서는 오차범위가 적으나, 2 3차 산업비중이 높은 지역에서는 설명력이 떨어지는 것으로 분석되었다. 또한 각 목적별 모형이 전반적으로 기존모형보다 오차가 적은 것으로 나타났다. 따라서 본 연구에서 제시한 사회경제지표 및 토지이용변수를 활용하여 각 지역별 모형을 추정한 결과가 기존 연구보다 우수한 것을 알 수 있었다.