• Title/Summary/Keyword: Regression Study

Search Result 28,750, Processing Time 0.054 seconds

Loss of Acquired Skills: Regression in Young Children With Autism Spectrum Disorders

  • Ye Rim Kim;Da-Yea Song;Guiyoung Bong;Jae Hyun Han;Hee Jeong Yoo
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.34 no.1
    • /
    • pp.51-56
    • /
    • 2023
  • Objectives: Regression, while not a core symptom of autism spectrum disorder (ASD), has been suggested to be a distinct subtype by previous studies. Therefore, this study aimed to explore the prevalence and clinical differences between those with and without regression in children with ASD. Methods: This study includes data from toddlers and young children aged 2-7 years acquired from other projects at Seoul National University Bundang Hospital. The presence and characteristics of regression were explored using question items #11-28 from the Autism Diagnostic Interview-Revised. Chi-square and independent t-tests were used to compare various clinical measurements such as autistic symptoms, adaptative behavior, intelligence, and perinatal factors. Results: Data from 1438 young children (1020 with ASD) were analyzed. The overall prevalence rate of regression, which was mainly related to language-related skills, was 10.2% in the ASD group, with an onset age of 24 months. Regarding clinical characteristics, patients with ASD and regression experienced ASD symptoms, especially restricted and repetitive interests and behaviors, with greater severity than those without regression. Furthermore, there were significant associations between regression and hypertension/placenta previa. Conclusion: In-depth surveillance and proactive interventions targeted at young children with ASD and regression should focus on autistic symptoms and other areas of functioning.

A Study for Predicting Building Energy Use with Regression Analysis (회귀분석에 의한 건물에너지 사용량 예측기법에 관한 연구)

  • 이승복
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1090-1097
    • /
    • 2000
  • Predicting building energy use can be useful to evaluate its energy performance. This study proposed empirical approach for predicting building energy use with regression analysis. For the empirical analysis, simple regression models were developed based on the historical energy consumption data as a function of daily outside temperature, the predicting equations were derived for different operational modes and day types, then the equations were applied for predicting energy use in a building. BY selecting a real building as a case study, the feasibilities of the empirical approach for predicting building energy use were examined. The results showed that empirical approach with regression analysis was fairly reliable by demonstrating prediction accuracy of $pm10%$ compared with the actual energy consumption data. It was also verified that the prediction by regression models could be simple and fairly accurate. Thus, it is anticipated that the empirical approach will be useful and reliable tool for many purposes: retrofit savings analysis by estimating energy usage in an existing building or the diagnosis of the building operational problems with real time analysis.

  • PDF

A Study on the Prediction Model of Total Construction Period according to the Type of Machine Learning Regression (머신러닝 회귀분석 유형에 따른 총 공사기간 예측 모델에 관한 연구)

  • Kang, Yun-Ho;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.361-362
    • /
    • 2023
  • In construction work, there is often a difference between the estimated construction period and the actual construction period. Accordingly, the project may be delayed from the scheduled date, leading to huge losses due to problems such as increased costs during construction. In this way, it is important to calculate the appropriate construction period at the project planning stage in construction work. To solve this problem, we would like to study a model that will increase the accuracy of the scheduled construction period at the project planning stage. This study compared and analyzed linear regression, Lasso regression, Ridge regression among the types of regression analysis to select an appropriate construction period prediction model to secure an appropriate construction period at the project planning stage to reduce problems during construction.

  • PDF

The Effects of Urban Forest on Summer Air Temperature in Seoul, Korea (도시림의 여름 대기온도 저감효과 - 서울시를 대상으로 -)

  • 조용현;신수영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.28-36
    • /
    • 2002
  • The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the Oafnc facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperahne, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field swey of summer air temperature be Performed for the vadidation of the models. The main purpose of this study was to estimate a new regression model to explain the relationship between urban forest and air temperature in summer, 2001. This study consists of two parts: correlation coefficient analysis and regression analysis. According to correlation coefficient analysis, thermal infra-red radiations of the major land use categories found significant difference in each category. However there were no significant relationship between the data (thermal infra-red radiation and NDVI) derived from Landsat-7 ETM+ image and air temperature at Automatic Weather Stations(AWSs). After estimating various regression models for summer air temperature, the final models were chosen. The final regression models consisted of two variables such as forest m and traffic facilities area. The regression models explained over 78% of the variability in air temperatures. The regression models with variables of forest area and traffic facilities area showed that the coefficient of the first variable was even more significant than the second one. However, the negative impact of the traffic facilities area was slightly greater than the positive impact of the forest area. Consequently, the effects of forest area and traffic facilities area were apparent to explain summer air temperature in Seoul. Therefore two policies have the most important implications to mitigate the summer air temperature in Seoul: to expand and to conserve the urban forest; and to change the traffic facilities'characteristics. The results from this study are expected to be useful not merely in informing the public that urban forest mitigates summer air temperature, but in urging the necessity of budgets for trees and managing urban forests. It is recommended that field survey of summer air temperature be Performed for the vadidation of the models.

Correlation Analysis of Reservoir Water Quality with respect to Land Use Types of Watersheds (유역 토지이용과 저수지 수질의 상관관계 분석)

  • Youn, Dong-Koun;Chung, Sang-Ok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.24
    • /
    • pp.49-53
    • /
    • 2006
  • The objective of this study was to present regression equations between reservoir water quality and land use types of the watersheds. In order to derive regression equations, a multiple linear regression analysis was used using observed data from 88 reservoirs in the Kyungpook Provcince. The measured values of BOD, COD, T-N, and T-P were correlated with the areas of land use types. 23 regression equations were obtained for all the water quality items and watershed sizes. The results showed that 2 regression equations have the multiple correlation coefficient(MCC) above 0.90, 10 regression equations have the MCC values from 0.70 to 0.90, 9 equations have the MCC from 0.40 to 0.70, and 2 equations have the MCC from 0.20 to 0.40. The results of this study can be used to estimate reservoir water quality simply and quickly in the planning phase.

  • PDF

Wage Determinants Analysis by Quantile Regression Tree

  • Chang, Young-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.293-301
    • /
    • 2012
  • Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates conditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS problems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quantile regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level throughout the quantiles; in addition, education experience appears as the important determinant of the wage level in the highly paid group.

A Study on the Power Comparison between Logistic Regression and Offset Poisson Regression for Binary Data

  • Kim, Dae-Youb;Park, Heung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.537-546
    • /
    • 2012
  • In this paper, for analyzing binary data, Poisson regression with offset and logistic regression are compared with respect to the power via simulations. Poisson distribution can be used as an approximation of binomial distribution when n is large and p is small; however, we investigate if the same conditions can be held for the power of significant tests between logistic regression and offset poisson regression. The result is that when offset size is large for rare events offset poisson regression has a similar power to logistic regression, but it has an acceptable power even with a moderate prevalence rate. However, with a small offset size (< 10), offset poisson regression should be used with caution for rare events or common events. These results would be good guidelines for users who want to use offset poisson regression models for binary data.

Estimating excess post-exercise oxygen consumption using multiple linear regression in healthy Korean adults: a pilot study

  • Jung, Won-Sang;Park, Hun-Young;Kim, Sung-Woo;Kim, Jisu;Hwang, Hyejung;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.1
    • /
    • pp.35-41
    • /
    • 2021
  • [Purpose] This pilot study aimed to develop a regression model to estimate the excess post-exercise oxygen consumption (EPOC) of Korean adults using various easy-to-measure dependent variables. [Methods] The EPOC and dependent variables for its estimation (e.g., sex, age, height, weight, body mass index, fat-free mass [FFM], fat mass, % body fat, and heart rate_sum [HR_sum]) were measured in 75 healthy adults (31 males, 44 females). Statistical analysis was performed to develop an EPOC estimation regression model using the stepwise regression method. [Results] We confirmed that FFM and HR_sum were important variables in the EPOC regression models of various exercise types. The explanatory power and standard errors of estimates (SEE) for EPOC of each exercise type were as follows: the continuous exercise (CEx) regression model was 86.3% (R2) and 85.9% (adjusted R2), and the mean SEE was 11.73 kcal, interval exercise (IEx) regression model was 83.1% (R2) and 82.6% (adjusted R2), while the mean SEE was 13.68 kcal, and the accumulation of short-duration exercise (AEx) regression models was 91.3% (R2) and 91.0% (adjusted R2), while the mean SEE was 27.71 kcal. There was no significant difference between the measured EPOC using a metabolic gas analyzer and the predicted EPOC for each exercise type. [Conclusion] This pilot study developed a regression model to estimate EPOC in healthy Korean adults. The regression model was as follows: CEx = -37.128 + 1.003 × (FFM) + 0.016 × (HR_sum), IEx = -49.265 + 1.442 × (FFM) + 0.013 × (HR_sum), and AEx = -100.942 + 2.209 × (FFM) + 0.020 × (HR_sum).

Relationship between Aiming Patterns and Scores in Archery Shooting

  • Quan, ChengHao;Lee, Sangmin
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2016
  • Objective: The aim of this study was to investigate the relationship between aiming patterns and scores in archery shooting. Method: Four (N = 4) elementary-level archers from middle school participated in this study. Aiming pattern was defined by averaged acceleration data measured from accelerometers attached on the body during the aiming phase in archery shooting. Stepwise multiple regression analysis was used to test whether a model incorporating aiming patterns from all nine accelerometers could predict the scores. In order to extract period of interest (POI) data from raw data, a Dynamic Time Warping (DTW)-based extraction method was presented. Results: Regression models for all four subjects are conducted with different significance levels and variables. The significance levels of the regression models are 0.12%, 1.61%, 0.55%, and 0.4% respectively; the $R^2$ of the regression models is 64.04%, 27.93%, 72.02%, and 45.62% respectively; and the maximum significance levels of parameters in the regression models are 1.26%, 4.58%, 5.1%, and 4.98% respectively. Conclusion: Our results indicated that the relationship between aiming patterns and scores was described by a regression model. Analysis of the significance levels, variables, and parameters of the regression model showed that our approach - regression analysis with DTW - is an effective way to raise scores in archery shooting.

A Study on Determinants of Inventory Turnover using Quantile Regression Analysis (분위회귀분석을 이용한 재고회전율 결정요인 분석)

  • Kim, Gilwhan
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.185-195
    • /
    • 2022
  • Purpose - This study attempts to analyze the determinants of inventory turnover by applying quantile regression analysis. Design/methodology/approach - By selecting the gross margin, capital intensity, and sale surprise as the determinants of inventory turnover, we investigate their effects on inventory turnover at the several quartiles (10%, 25%, 50%, 75%, 90%) of inventory turnover with quantile regression analysis. Findings - The effects of gross margin and capital intensity on inventory turnover are different for each quartile. But the effects of sale surprise on inventory turnover are not different for each quartile. Research implications or Originality -This study is the first attempt to examine the effects of inventory turnover determinants on inventory turnover by applying quantile regression analysis was not employed in the prior studies. Thus, this study is meaningful in that it shows the possible way to review inventory management strategies that can be applied differently to the firms with different inventory turnover levels.