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Abstract
Quantile regression proposed by Koenker and Bassett (1978) is a statistical technique that estimates con-

ditional quantiles. The advantage of using quantile regression is the robustness in response to large outliers
compared to ordinary least squares(OLS) regression. A regression tree approach has been applied to OLS prob-
lems to fit flexible models. Loh (2002) proposed the GUIDE algorithm that has a negligible selection bias and
relatively low computational cost. Quantile regression can be regarded as an analogue of OLS, therefore it can
also be applied to GUIDE regression tree method. Chaudhuri and Loh (2002) proposed a nonparametric quan-
tile regression method that blends key features of piecewise polynomial quantile regression and tree-structured
regression based on adaptive recursive partitioning. Lee and Lee (2006) investigated wage determinants in the
Korean labor market using the Korean Labor and Income Panel Study(KLIPS). Following Lee and Lee, we fit
three kinds of quantile regression tree models to KLIPS data with respect to the quantiles, 0.05, 0.2, 0.5, 0.8,
and 0.95. Among the three models, multiple linear piecewise quantile regression model forms the shortest tree
structure, while the piecewise constant quantile regression model has a deeper tree structure with more terminal
nodes in general. Age, gender, marriage status, and education seem to be the determinants of the wage level
throughout the quantiles; in addition, education experience appears as the important determinant of the wage
level in the highly paid group.
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1. Introduction

Quantile regression originally proposed by Koenker and Bassett (1978) is a statistical technique that
estimates conditional quantiles. It is originated from the linear l1-regression problem by Barrodale and
Roberts (1980), Bartels and Conn (1980) and others which is also based on Charnes et al. (1955) and
Wagner (1959). Koenker and Bassett (1978) extended these algorithms to linear quantile regression.
Koenker and D’Orey (1987) improved the linear quantile regression based on the simplex method by
modifying the Barrodale-Roberts algorithm.

Koenker and Park (1994) proposed a new approach to the computation of nonlinear quantile re-
gression estimators based on interior point methods for solving linear programs. They discussed the
interior point methods to solve strictly linear programs (that include the linear quantile regression
problem) and extended them to nonlinear problems. It turned out the interior point algorithm offered
the natural extension to nonlinear problems unlike the simplex method. A regression tree approach
has been applied to ordinary least squares(OLS) problems to fit flexible models. Loh (2002) proposed
the GUIDE algorithm, which has a negligible selection bias and a relatively low computational cost.
GUIDE is also known as a smart data mining tool with a flexible model fitting methods at each node.

Just as an OLS problem is solved by GUIDE, a quantile regression problem can be dealt with in
a piecewise regression tree approach. Chaudhuri and Loh (2002) proposed a nonparametric quantile
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Figure 1: Example of a quantile regression tree for α quantile: At each intermediate node, a case goes to the left
child node if the condition is satisfied. Number beneath a leaf is sample quantile of the dependent variable.

regression method that blends key features of piecewise polynomial quantile regression and tree-
structured regression based on adaptive recursive partitioning. Unlike least squares regression trees
that concentrate on modeling the relationship between the response and the covariates at the center
of the response distribution, the method can provide insight into the nature of that relationship at the
center as well as the tails of the response distribution.

Figure 1 shows an example of a quantile regression tree, where the root node contains all the
training observations, and the training data are recursively partitioned by values of the input variables
until reaching the terminal nodes (t4, t5, t6, t8 and t9) where the predictions are made. At the terminal
nodes, each quantile regression model is fitted based on data partitioned.

Tree-structured quantile regression algorithm has the advantage of fitting flexible models since
they can capture non-linearity by piecewise linear models fitted at the terminal nodes.

Lee and Lee (2006) investigated wage determinants in the Korean labor market using the Korean
Labor and Income Panel Study(KLIPS). They used the quantile regression method for each condi-
tional quantile wage group. Quantile regressions in the paper examined more comprehensive pictures
for different quantile wage groups while most other previous labor market analyses use (mean) regres-
sion analysis, that focused only on average statistics.

They discovered that education does not seem always appear to provide the necessary job skills, so
that the return on education is fairly low compared to the US labor market. Age; however, it was shown
to be one of the most important factors for wage determination especially for the higher wages groups.
Likewise, they did several analyses to find the respective relationship between wage and independent
variables in the data. We are interested in the analysis of KLIPS data using a quantile regression tree
approach. We may find more interesting results compared to those of the simple quantile regression
method used in Lee and Lee (2006). The characteristics of a quantile regression tree may give us a
more helpful and meaningful result. This paper is organized as follows. In Section 2, we introduce the
concept of quantile regression followed by a tree-structured quantile regression algorithm (GUIDE).
Section 3 covers real data analysis and Section 4 concludes with a summary of the real data analysis
using a quantile regression tree.
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2. Quantile Regression and GUIDE

2.1. Quantile regression

Quantile regression analysis focuses on the conditional αth quantile of the response variable given
the predictor variables. Unlike usual regression analysis that focuses on the conditional mean of the
response given the predictors, quantile regression gives insight into the center as well as the lower
and upper tails of the conditional distribution of the response with varying choices of α. Chaudhuri
and Loh (2002) pointed out that quantile regression is quite effective as a tool to explore and model
the nature of dependence of a response on the predictors when the predictors have different effects
on different parts of the conditional distribution of the response that occurs in many econometric
problems. For example, in marketing studies, where predictor variables may have different effects
on high, medium and low consumption groups, quantile regression can be useful to understand the
nature of the dependence between the response and the predictors. Besides the effective modeling,
the advantage of using quantile regression is the robustness in response to large outliers compared to
ordinary least squares(OLS) regression that can be easily understood.

Quantile regression can be described as following according to Koenker (2005); Let Y be a
dependent variable, X a (d-dimensional) predictor variable,

Qα(X = x) = inf {y : F(y|X = x) ≥ α} .

The conditional distribution function F(y|X = x) is,

F(y|X = x) = P(Y ≤ y|X = x),

where F(·) is cdf of Y and consequently αth quantile of Y is F−1(α) = inf {y : F(y|X = x) ≥ α} . Let
the check function be ρα is ρα(u) = u(α − I(u < 0)). Then looking for the ŷ that minimizes

Eρα (Y − ŷ) = (α − 1)
∫ ŷ

−∞
(Y − ŷ)dF(y) + α

∫ ∞
ŷ

(Y − ŷ)dF(y).

Leads to the first order condition,

0 = (1 − α)
∫ ŷ

−∞
dF(y) − α

∫ ∞
ŷ

dF(y) = F(ŷ) − α.

While least-squares regression focuses only on the conditional mean E(Y |X = x) that minimizes the
expected squared error loss, the objective of quantile regression is to find the conditional quantile that
minimizes the expected loss E(ρα),

Qα(X = x) = arg min
β∈Rd

E(ρα(Y − x′β)).

2.2. GUIDE quantile regression

The aim of regression analysis is to discover the relationships between the response variable and
the predictor variables, and eventually to use the relationships to make predictions based on the in-
formation. A regression tree is a tree-structured solution in which a constant or a relatively simple
regression model is fitted to the data in each partition. Chaudhuri and Loh (2002) proposed a nonpara-
metric quantile regression method using a regression tree. Quantile regression trees have a piecewise
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constant, piecewise polynomial, or piecewise multiple linear option, where each piece is obtained by
fitting respective corresponding models to the data in the terminal node of a binary tree. The tree
is constructed by recursively partitioning the data based on repeated analyses of the residuals ob-
tained after model fitting with quantile regression. This idea is implemented in GUIDE(Generalized,
Unbiased, Interaction Detection and Estimation (Loh, 2002)) software, of which a multiple linear
procedure is briefly sketched as follows:

1. Fit a quantile regression model to the data in the node using the algorithm in Koenker and D’Orey
(1987) and compute the residuals.

2. For each observation, define the class variable Z by the sign of its residual for each observation.
That is, Define Z = 1 if the observation is associated with a positive residual. Otherwise, define
Z = 0.

3. Construct a 2 × m cross-classification table for each predictor variable X. The rows of the table
are the values of Z, while the columns of the table are 4 intervals at the sample quartiles if X is a
numerical variable (m = 4). If X is a categorical variable, its m distinct values form the columns of
the table. Compute a p-value for the chi-squared test for each X based on the table.

4. Select the split variable X from the previous steps. Let tL and tR denote the left and right subnodes
of t.

• If X is a numerical variable, search for the split point that gives the lowest total of the sums of
squared residuals in tL and tR, provided that the number of observations at each node is at least
n0 or user-specified value.

• If X is a categorical variable, search for the split of the form X ∈ C, which gives the lowest
weighted sum of the variances of Z in tL and tR, provided that the number of observations at each
node is at least n0. Here C is a subset of the values taken by X, and weights are proportional to
sample sizes.

5. After splitting has stopped, prune the tree with a test sample or by cross-validation.

For details, see Loh (2002).

3. Real Data Analysis

3.1. Data description

We use data from the Korean Labor and Income Panel Study(KLIPS) due to Lee and Lee (2006).
The Korea Labor Institute began to collect detailed data for households and individuals starting in
1998. The data collection is modeled after the Panel Study of Income Dynamics(PSID) from the
University of Michigan. We use data of 2007 and currently employed ones at the year of 2007 are
selected from among the 13,738 individual observations in the dataset. That is, self-employed or
unemployed observation are excluded for the analysis. The wage variable is an average monthly wage
in Korean won in 10,000 won units. Independent variables are generated as described in Lee and
Lee (2006). Education is measured as the total number of years in school. The original education
variable in the dataset is a categorical variable that was converted to a numerical variable based on
duration of schooling. For example, graduation from elementary school gives six, from middle school
gives nine, and so on. Occupational types are categorized as highly skilled white-collar, lower-skilled
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Table 1: List of variables
Variables

Dependent variable Wage
Education, Age, Job experience

Independent variables Total jobs, High White, Low White, High Blue, Low Blue
Origin 1 through 4, Region 1 through 3, Gender, Married, Union

white-collar, highly skilled blue-collar and lower skilled blue-collar jobs. Origin variables are dummy
variables of birthplace. Origin 1 is for Kyungsang-do, Origin 2 for Seoul, Incheon, and Kyunggi-do,
Origin 3 for Chola-do and Jeju-do, and Origin 4 for Chungcheng-do and Kangwon-do and the rest of
Korea. Regional variables are also dummy variables with Region 1 for Seoul, Region 2 for other large
metropolitan areas, and Region 3 for all other areas. The list of variables is in Table 1.

3.2. Results

We fit three quantile regression models to the KLIPS data using GUIDE. Piecewise constant, piece-
wise multiple linear, and piecewise simple linear quantile regression models are fitted. Each tree of
quantiles α = 0.05, 0.20, 0.50, 0.80 and 0.95 is presented. These three kinds of trees give quite similar
results; however, some trees may have more detailed information based on the models fitted at the
terminal nodes than others.

3.2.1. Piecewise constant quantile regression tree

We can see that AGE is the first split variable in the lower quantiles (α = 0.05, 0.20). GENDER
and MARRIED are also the common variables that show up in the lower quantile trees. Especially,
AGE appears three times in the lowest quantile, which means AGE divides the wage level into many
pieces compared to other quantiles. We can see that the married males between 24.5 and 43.5 years
old get paid most in the 5 percentile wage level. The 20 percentile tree looks a little different from
the lowest quantile tree. The education duration more than 14.5 years gives the highest wage level
among people over 43.5 years old. The next highest level belongs to married males not more than
43.5 years old. The older people get paid more provided that they are relatively well educated. The
median tree gives quite different result from previous two trees with lower quantiles. The education
experience determines the wage level in the root node. It is regarded as the most important variable
in the tree that tells the wage level. The highest level comes from the group with more than 15.5
years of education experience, with ages older than 36.5. We can see that the split point of the AGE
variable is quite low that means there exist well-paid young people in the median level compared to
the lower quantiles. Concerning GENDER, males get paid more like the previous two trees. The only
split variable is EDUCATION in the 80 and 95 percentile trees. Education duration more than 15.5
years get paid more in the higher quantiles. The education duration of 15.5 years could be regarded
as nearly university-graduate level. Other particular things we can see from these high wage level
trees are the disappearing of the two variables AGE and GENDER. It seems that education mainly
determines the wage level in the well-paid groups.

3.2.2. Multiple linear quantile regression tree

For the multiple linear quantile regression trees, we do not see any variable for the split at the 5, 20,
and 95 percentiles. The model fitted at the terminal node is in the form of multiple regression, so
the split structure rarely appears in comparison to the constant quantile regression trees. The multiple
regression model may contain the curvature structures that are presented by the split variables in



298 Youngjae Chang

Figure 2: GUIDE piecewise constant quantile regression tree (The left tree is for the 5 percentile and the right
one is for the 20 percentile).

Figure 3: GUIDE piecewise constant quantile regression tree (The left tree is for the 50 percentile and the right
one is for the 80 percentile).

Figure 4: GUIDE piecewise constant quantile regression tree (This tree is for the 95 percentile).
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Figure 5: GUIDE piecewise multiple linear quantile regression tree (The left tree is for the 5 percentile and the
right one is for the 20 percentile).

Figure 6: GUIDE piecewise multiple linear quantile regression tree (The left tree is for the 50 percentile and the
right one is for the 80 percentile).

Figure 7: GUIDE piecewise multiple linear quantile regression tree (This tree is for the 95 percentile).

the constant regression trees. Only the 50 and 80 percentile trees have the splits with AGE and
EDUCATION variables The 50 percentile multiple linear regression tree has the same split variables
as those in the 50 percentile constant tree, but the split points are different because of the model
fitted at the terminal nodes. The 80 percentile multiple linear tree also has the same split variable,
EDUCATION, but the split point is 12.50 and is a little smaller than that in the constant tree. The
difference is explained by the model at the terminal node. The multiple linear quantile regression trees
comply with constant quantile regression trees.

3.2.3. Simple linear quantile regression tree

A simple linear tree is the tree that has a simple regression model at the terminal nodes. The difference
between the multiple linear regression tree and simple linear regression tree is the number of predictors
of the models at the terminal nodes. So, we fit a model with only one predictor at the terminal node.
The best simple linear model fitted at the terminal nodes is best in the sense that the model gives the
lowest mean squared error. Such a simple linear regression tree is useful when a piecewise constant
tree has too many nodes but a piecewise linear one has too few. MARRIED, AGE, and GENDER
variables come out as split variables at the 5 percentile tree that also appear as split variables in
the 5 percentile constant tree; however, the structure is quite different from each other. Note that
EDUCATION appears almost everywhere as the predictor variable at one of the terminal nodes.

4. Conclusion and Future Work

Following Lee and Lee, we fit three kinds of quantile regression tree model to KLIPS data with respect
to the quantiles, 0.05, 0.2, 0.5, 0.8, and 0.95. Among the three models, multiple linear piecewise
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Figure 8: GUIDE piecewise simple linear quantile regression tree (The left tree is for the 5 percentile and the
right one is for the 20 percentile).

Figure 9: GUIDE piecewise simple linear quantile regression tree (The left tree is for the 50 percentile and the
right one is for the 80 percentile).

Figure 10: GUIDE piecewise simple linear quantile regression tree (This tree is for the 95 percentile).

quantile regression model forms the shortest tree structure, while the piecewise constant quantile
regression model has a deeper tree structure with more terminal nodes in general. This implies that
we can simplify the tree structure by fitting a linear model instead of a constant at each node. This
result corresponds to that of a usual regression tree approach. Similar to Chang’s analysis (2010) of
the impact factors for the Business Survey Index(BSI) using regression trees, we can easily detect the
important factors that impact wage levels from several quantile regression trees in this paper. AGE
appears as a very important determinant of wage in the lowest paid group. It seems that EDUCATION
mainly determines the wage level in the well-paid groups. Concerning GENDER, males get paid more
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than females in general. There is also some room for research improvement in the near future. We
can think about an extension of the cross-sectional quantile regression tree analysis to compare the
changes in determinants as time goes on. We may consider the application of the panel data analysis
method to the regression trees to make it possible.
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